Robust Shrinkage Estimation of High-Dimensional Covariance Matrices

We address high dimensional covariance estimation for elliptical distributed samples, which are also known as spherically invariant random vectors (SIRV) or compound-Gaussian processes. Specifically we consider shrinkage methods that are suitable for high dimensional problems with a small number of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2011-09, Vol.59 (9), p.4097-4107
Hauptverfasser: Yilun Chen, Wiesel, A., Hero, A. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We address high dimensional covariance estimation for elliptical distributed samples, which are also known as spherically invariant random vectors (SIRV) or compound-Gaussian processes. Specifically we consider shrinkage methods that are suitable for high dimensional problems with a small number of samples (large p small n ). We start from a classical robust covariance estimator [Tyler (1987)], which is distribution-free within the family of elliptical distribution but inapplicable when n
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2011.2138698