Inversion formula for diadic wavelet representation of second-order processes

We give an inversion formula for orthogonal random measure(ORM) of diadic wavelet representation of second-order processes. The keys to the method are construction of indicator function of a desired set on (a, b)-domain and an evaluation of a principal value integral related to sinξ/ξ. Though we can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japan journal of industrial and applied mathematics 2000-02, Vol.17 (1), p.85-100
1. Verfasser: Kawasaki, Shuji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give an inversion formula for orthogonal random measure(ORM) of diadic wavelet representation of second-order processes. The keys to the method are construction of indicator function of a desired set on (a, b)-domain and an evaluation of a principal value integral related to sinξ/ξ. Though we can not construct any such indicator functions by wavelet transform, we show that we can, in certain limit form, by using a series of wavelet transforms. But we encounter there an uncertainty lying between variablesa andb so that we can not make the indicator function of a set on (a, b)-domain which is as "small" as we like.[PUBLICATION ABSTRACT]
ISSN:0916-7005
1868-937X
DOI:10.1007/BF03167338