Inversion formula for diadic wavelet representation of second-order processes
We give an inversion formula for orthogonal random measure(ORM) of diadic wavelet representation of second-order processes. The keys to the method are construction of indicator function of a desired set on (a, b)-domain and an evaluation of a principal value integral related to sinξ/ξ. Though we can...
Gespeichert in:
Veröffentlicht in: | Japan journal of industrial and applied mathematics 2000-02, Vol.17 (1), p.85-100 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give an inversion formula for orthogonal random measure(ORM) of diadic wavelet representation of second-order processes. The keys to the method are construction of indicator function of a desired set on (a, b)-domain and an evaluation of a principal value integral related to sinξ/ξ. Though we can not construct any such indicator functions by wavelet transform, we show that we can, in certain limit form, by using a series of wavelet transforms. But we encounter there an uncertainty lying between variablesa andb so that we can not make the indicator function of a set on (a, b)-domain which is as "small" as we like.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0916-7005 1868-937X |
DOI: | 10.1007/BF03167338 |