Electromagnetic field generated by a finite fault due to electrokinetic effect
This work investigates surface electromagnetic wavefields generated by a finite fault due to electrokinetic effect with Pride's theory as the governing equations. A finite fault is discretized into a series of small subfaults, each of which is taken as a point source with different initiation t...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research 2011-08, Vol.116 (B8), p.n/a, Article B08302 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work investigates surface electromagnetic wavefields generated by a finite fault due to electrokinetic effect with Pride's theory as the governing equations. A finite fault is discretized into a series of small subfaults, each of which is taken as a point source with different initiation time. The wavefields generated by the whole fault are then synthesized by stacking those generated by all the subfaults. Numerical simulations of a vertical strike‐slip fault with a constant rupturing velocity are then conducted on the basis of the derived formalism. Simulation results show that the rupturing fault generates observable permanent ground motions and electromagnetic field disturbances. Two types of electric field characters are observed in simulations: the coseismic oscillatory variation and the postseismic decaying variation. When the fault rupturing stops and the seismic waves pass far away, the magnetic field vanishes while the electric field remains, decaying slowly and lasting for hundreds of seconds. Adjacent to the free surface the vertical electric field is about 100 times larger than the horizontal one. When the receiving depth increases, the amplitudes of the horizontal electric fields in both the oscillatory and decaying components increase while those of the vertical electric fields decrease. It is also shown that there is no horizontal electric field remnant right at the free surface after the seismic perturbations decay away. The near‐fault electric fields simulated in this paper hold similar features to some field observations in literature.
Key Points
There are electromagnetic perturbations accompanying the seismic waves
There is remnant electric field decaying with time near the fault
The horizontal electric fields are smaller than the vertical one near the surface |
---|---|
ISSN: | 0148-0227 2169-9313 2156-2202 2169-9356 |
DOI: | 10.1029/2010JB007958 |