Instabilities in a two-dimensional combustion model with free boundary

We prove instability of the planar travelling wave solution in a two-dimensional free boundary problem modelling the propagation of near- equidiffusional premixed flames in the whole plane. We reduce the problem to a fixed boundary fully nonlinear parabolic system. The spectrum of the linearized ope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2000-09, Vol.154 (2), p.157-182
Hauptverfasser: BRAUNER, Claude-Michel, LUNARDI, Alessandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove instability of the planar travelling wave solution in a two-dimensional free boundary problem modelling the propagation of near- equidiffusional premixed flames in the whole plane. We reduce the problem to a fixed boundary fully nonlinear parabolic system. The spectrum of the linearized operator contains an interval [0,ω^sup c^], ω^sup c^ > 0, so we cannot construct backward solutions. We use an argument about stability of dynamical systems in Banach spaces in order to prove pointwise instability of the moving front.[PUBLICATION ABSTRACT]
ISSN:0003-9527
1432-0673
DOI:10.1007/s002050000099