On singular limits of mean-field equations

Mean-field equations arise as steady state versions of convection-diffusion systems where the convective field is determined by solution of a Poisson equation whose right-hand side is affine in the solutions of the convection-diffusion equations. In this paper we consider the repulsive coupling case...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2001-07, Vol.158 (4), p.319-351
Hauptverfasser: DOLBEAULT, Jean, MARKOWICH, Peter A, UNTERREITER, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mean-field equations arise as steady state versions of convection-diffusion systems where the convective field is determined by solution of a Poisson equation whose right-hand side is affine in the solutions of the convection-diffusion equations. In this paper we consider the repulsive coupling case for a system of two convection-diffusion equations. For general diffusivities we prove the existence of a unique solution of the mean-field equation by a variational analysis of a saddle point problem (usually without coercivity). Also we analyze the small-Debye-length limit and prove convergence to either the so-called charge-neutral case or to a double obstacle problem for the limiting potential depending on the data.[PUBLICATION ABSTRACT]
ISSN:0003-9527
1432-0673
DOI:10.1007/s002050100148