Triangulated categories and Kac-Moody algebras
By using the Ringel-Hall algebra approach, we find a Lie algebra arising in each triangulated category with T ^sup 2^=1, where T is the translation functor. In particular, the generic form of the Lie algebras determined by the root categories, the 2-period orbit categories of the derived categories...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2000-06, Vol.140 (3), p.563-603 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 603 |
---|---|
container_issue | 3 |
container_start_page | 563 |
container_title | Inventiones mathematicae |
container_volume | 140 |
creator | Peng, Liangang Xiao, Jie |
description | By using the Ringel-Hall algebra approach, we find a Lie algebra arising in each triangulated category with T ^sup 2^=1, where T is the translation functor. In particular, the generic form of the Lie algebras determined by the root categories, the 2-period orbit categories of the derived categories of finite dimensional hereditary associative algebras, gives a realization of all symmetrizable Kac-Moody Lie algebras.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s002220000062 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_881395289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418729671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e5e0aee57496b3d7ef4c350eae1b4930495346185825b230155588aec8b10a803</originalsourceid><addsrcrecordid>eNpVUD1PwzAUtBBIhMLIHrG7vOePxB5RBRRRxFJmy3FeolQhKXY69N-TqizccDfc6U46xu4RlghQPiYAIQScUIgLlqGSgqOw5SXLZgu4tQjX7CalHcBsliJjy23s_NAeej9RnYeZ2zF2lHI_1Pm7D_xjHOtj7vuWqujTLbtqfJ_o7k8X7Ovlebta883n69vqacODsDhx0gSeSJfKFpWsS2pUkBrIE1bKSlBWS1Wg0UboSkhArbUxnoKpELwBuWAP5959HH8OlCa3Gw9xmCedMSitFsbOIX4OhTimFKlx-9h9-3h0CO70iPv3iPwFt5JQhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881395289</pqid></control><display><type>article</type><title>Triangulated categories and Kac-Moody algebras</title><source>SpringerNature Journals</source><creator>Peng, Liangang ; Xiao, Jie</creator><creatorcontrib>Peng, Liangang ; Xiao, Jie</creatorcontrib><description>By using the Ringel-Hall algebra approach, we find a Lie algebra arising in each triangulated category with T ^sup 2^=1, where T is the translation functor. In particular, the generic form of the Lie algebras determined by the root categories, the 2-period orbit categories of the derived categories of finite dimensional hereditary associative algebras, gives a realization of all symmetrizable Kac-Moody Lie algebras.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s002220000062</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><ispartof>Inventiones mathematicae, 2000-06, Vol.140 (3), p.563-603</ispartof><rights>Springer-Verlag Berlin Heidelberg 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e5e0aee57496b3d7ef4c350eae1b4930495346185825b230155588aec8b10a803</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids></links><search><creatorcontrib>Peng, Liangang</creatorcontrib><creatorcontrib>Xiao, Jie</creatorcontrib><title>Triangulated categories and Kac-Moody algebras</title><title>Inventiones mathematicae</title><description>By using the Ringel-Hall algebra approach, we find a Lie algebra arising in each triangulated category with T ^sup 2^=1, where T is the translation functor. In particular, the generic form of the Lie algebras determined by the root categories, the 2-period orbit categories of the derived categories of finite dimensional hereditary associative algebras, gives a realization of all symmetrizable Kac-Moody Lie algebras.[PUBLICATION ABSTRACT]</description><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpVUD1PwzAUtBBIhMLIHrG7vOePxB5RBRRRxFJmy3FeolQhKXY69N-TqizccDfc6U46xu4RlghQPiYAIQScUIgLlqGSgqOw5SXLZgu4tQjX7CalHcBsliJjy23s_NAeej9RnYeZ2zF2lHI_1Pm7D_xjHOtj7vuWqujTLbtqfJ_o7k8X7Ovlebta883n69vqacODsDhx0gSeSJfKFpWsS2pUkBrIE1bKSlBWS1Wg0UboSkhArbUxnoKpELwBuWAP5959HH8OlCa3Gw9xmCedMSitFsbOIX4OhTimFKlx-9h9-3h0CO70iPv3iPwFt5JQhw</recordid><startdate>20000601</startdate><enddate>20000601</enddate><creator>Peng, Liangang</creator><creator>Xiao, Jie</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20000601</creationdate><title>Triangulated categories and Kac-Moody algebras</title><author>Peng, Liangang ; Xiao, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e5e0aee57496b3d7ef4c350eae1b4930495346185825b230155588aec8b10a803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Liangang</creatorcontrib><creatorcontrib>Xiao, Jie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Liangang</au><au>Xiao, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triangulated categories and Kac-Moody algebras</atitle><jtitle>Inventiones mathematicae</jtitle><date>2000-06-01</date><risdate>2000</risdate><volume>140</volume><issue>3</issue><spage>563</spage><epage>603</epage><pages>563-603</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>By using the Ringel-Hall algebra approach, we find a Lie algebra arising in each triangulated category with T ^sup 2^=1, where T is the translation functor. In particular, the generic form of the Lie algebras determined by the root categories, the 2-period orbit categories of the derived categories of finite dimensional hereditary associative algebras, gives a realization of all symmetrizable Kac-Moody Lie algebras.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s002220000062</doi><tpages>41</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-9910 |
ispartof | Inventiones mathematicae, 2000-06, Vol.140 (3), p.563-603 |
issn | 0020-9910 1432-1297 |
language | eng |
recordid | cdi_proquest_journals_881395289 |
source | SpringerNature Journals |
title | Triangulated categories and Kac-Moody algebras |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T01%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triangulated%20categories%20and%20Kac-Moody%20algebras&rft.jtitle=Inventiones%20mathematicae&rft.au=Peng,%20Liangang&rft.date=2000-06-01&rft.volume=140&rft.issue=3&rft.spage=563&rft.epage=603&rft.pages=563-603&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s002220000062&rft_dat=%3Cproquest_cross%3E2418729671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881395289&rft_id=info:pmid/&rfr_iscdi=true |