Triangulated categories and Kac-Moody algebras
By using the Ringel-Hall algebra approach, we find a Lie algebra arising in each triangulated category with T ^sup 2^=1, where T is the translation functor. In particular, the generic form of the Lie algebras determined by the root categories, the 2-period orbit categories of the derived categories...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2000-06, Vol.140 (3), p.563-603 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By using the Ringel-Hall algebra approach, we find a Lie algebra arising in each triangulated category with T ^sup 2^=1, where T is the translation functor. In particular, the generic form of the Lie algebras determined by the root categories, the 2-period orbit categories of the derived categories of finite dimensional hereditary associative algebras, gives a realization of all symmetrizable Kac-Moody Lie algebras.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s002220000062 |