Zagier's conjecture on L ( E ,2)

In this paper we introduce an elliptic analog of the Bloch-Suslin complex and prove that it (essentially) computes the weight two parts of the groups K ^sub 2^(E) and K ^sub 1^(E) for an elliptic curve E over an arbitrary field k. Combining this with the results of Bloch and Beilinson we proved Zagi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 1998-05, Vol.132 (2), p.393-432
Hauptverfasser: Goncharov, A. B., Levin, A. M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we introduce an elliptic analog of the Bloch-Suslin complex and prove that it (essentially) computes the weight two parts of the groups K ^sub 2^(E) and K ^sub 1^(E) for an elliptic curve E over an arbitrary field k. Combining this with the results of Bloch and Beilinson we proved Zagier's conjecture on L(E,2) for modular elliptic curves over .[PUBLICATION ABSTRACT]
ISSN:0020-9910
1432-1297
DOI:10.1007/s002220050228