Zagier's conjecture on L ( E ,2)
In this paper we introduce an elliptic analog of the Bloch-Suslin complex and prove that it (essentially) computes the weight two parts of the groups K ^sub 2^(E) and K ^sub 1^(E) for an elliptic curve E over an arbitrary field k. Combining this with the results of Bloch and Beilinson we proved Zagi...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 1998-05, Vol.132 (2), p.393-432 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we introduce an elliptic analog of the Bloch-Suslin complex and prove that it (essentially) computes the weight two parts of the groups K ^sub 2^(E) and K ^sub 1^(E) for an elliptic curve E over an arbitrary field k. Combining this with the results of Bloch and Beilinson we proved Zagier's conjecture on L(E,2) for modular elliptic curves over .[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s002220050228 |