Embedding of hyperbolic groups into products of binary trees
We show that every Gromov hyperbolic group Γ admits a quasi-isometric embedding into the product of n+1 binary trees, where n=dim∂∞Γ is the topological dimension of the boundary at infinity of Γ.
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2007-07, Vol.169 (1), p.153-192 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that every Gromov hyperbolic group Γ admits a quasi-isometric embedding into the product of n+1 binary trees, where n=dim∂∞Γ is the topological dimension of the boundary at infinity of Γ. |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-007-0045-2 |