Limiting Carleman weights and anisotropic inverse problems
In this article we consider the anisotropic Calderón problem and related inverse problems. The approach is based on limiting Carleman weights, introduced in Kenig et al. (Ann. Math. 165:567–591, 2007 ) in the Euclidean case. We characterize those Riemannian manifolds which admit limiting Carleman we...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2009-10, Vol.178 (1), p.119-171 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article we consider the anisotropic Calderón problem and related inverse problems. The approach is based on limiting Carleman weights, introduced in Kenig et al. (Ann. Math. 165:567–591,
2007
) in the Euclidean case. We characterize those Riemannian manifolds which admit limiting Carleman weights, and give a complex geometrical optics construction for a class of such manifolds. This is used to prove uniqueness results for anisotropic inverse problems, via the attenuated geodesic ray transform. Earlier results in dimension
n
≥3 were restricted to real-analytic metrics. |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-009-0196-4 |