Almost isometric actions, property (T), and local rigidity

Let Γ be a discrete group with property (T) of Kazhdan. We prove that any Riemannian isometric action of Γ on a compact manifold X is locally rigid. We also prove a more general foliated version of this result. The foliated result is used in our proof of local rigidity for standard actions of higher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 2005-10, Vol.162 (1), p.19-80
Hauptverfasser: Fisher, David, Margulis, Gregory
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 80
container_issue 1
container_start_page 19
container_title Inventiones mathematicae
container_volume 162
creator Fisher, David
Margulis, Gregory
description Let Γ be a discrete group with property (T) of Kazhdan. We prove that any Riemannian isometric action of Γ on a compact manifold X is locally rigid. We also prove a more general foliated version of this result. The foliated result is used in our proof of local rigidity for standard actions of higher rank semisimple Lie groups and their lattices in [FM2]. One definition of property (T) is that a group Γ has property (T) if every isometric Γ action on a Hilbert space has a fixed point. We prove a variety of strengthenings of this fixed point properties for groups with property (T). Some of these are used in the proofs of our local rigidity theorems. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s00222-004-0437-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_881390678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418690071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-2ffc71933c43b37246e1fd8c3d5f6a4c0c560da87568647206d94111ff20e5023</originalsourceid><addsrcrecordid>eNotkMtKQzEYhIMoWKsP4C64Umj0z-UkOe5K8QYFN3UdYk4iKadNTdJF396UuprFDDPDh9AthUcKoJ4KAGOMAAgCgivSnaEJFZwRynp1jibNBtL3FC7RVSlrgGYqNkHP83GTSsWxpI2vOTpsXY1pW2Z4l9PO53rA96uHGbbbAY_J2RHn-BOHWA_X6CLYsfibf52ir9eX1eKdLD_fPhbzJXGc60pYCE7RnnMn-HfbFNLTMGjHhy5IKxy4TsJgteqklkIxkEMvKKUhMPAdMD5Fd6feduh370s167TP2zZptKa8B6l0C9FTyOVUSvbB7HLc2HwwFMyRkDkRMo2QORIyHf8DXZxWrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881390678</pqid></control><display><type>article</type><title>Almost isometric actions, property (T), and local rigidity</title><source>Springer Nature - Complete Springer Journals</source><creator>Fisher, David ; Margulis, Gregory</creator><creatorcontrib>Fisher, David ; Margulis, Gregory</creatorcontrib><description>Let Γ be a discrete group with property (T) of Kazhdan. We prove that any Riemannian isometric action of Γ on a compact manifold X is locally rigid. We also prove a more general foliated version of this result. The foliated result is used in our proof of local rigidity for standard actions of higher rank semisimple Lie groups and their lattices in [FM2]. One definition of property (T) is that a group Γ has property (T) if every isometric Γ action on a Hilbert space has a fixed point. We prove a variety of strengthenings of this fixed point properties for groups with property (T). Some of these are used in the proofs of our local rigidity theorems. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-004-0437-5</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Lie groups ; Studies</subject><ispartof>Inventiones mathematicae, 2005-10, Vol.162 (1), p.19-80</ispartof><rights>Springer-Verlag 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-2ffc71933c43b37246e1fd8c3d5f6a4c0c560da87568647206d94111ff20e5023</citedby><cites>FETCH-LOGICAL-c338t-2ffc71933c43b37246e1fd8c3d5f6a4c0c560da87568647206d94111ff20e5023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Fisher, David</creatorcontrib><creatorcontrib>Margulis, Gregory</creatorcontrib><title>Almost isometric actions, property (T), and local rigidity</title><title>Inventiones mathematicae</title><description>Let Γ be a discrete group with property (T) of Kazhdan. We prove that any Riemannian isometric action of Γ on a compact manifold X is locally rigid. We also prove a more general foliated version of this result. The foliated result is used in our proof of local rigidity for standard actions of higher rank semisimple Lie groups and their lattices in [FM2]. One definition of property (T) is that a group Γ has property (T) if every isometric Γ action on a Hilbert space has a fixed point. We prove a variety of strengthenings of this fixed point properties for groups with property (T). Some of these are used in the proofs of our local rigidity theorems. [PUBLICATION ABSTRACT]</description><subject>Lie groups</subject><subject>Studies</subject><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkMtKQzEYhIMoWKsP4C64Umj0z-UkOe5K8QYFN3UdYk4iKadNTdJF396UuprFDDPDh9AthUcKoJ4KAGOMAAgCgivSnaEJFZwRynp1jibNBtL3FC7RVSlrgGYqNkHP83GTSsWxpI2vOTpsXY1pW2Z4l9PO53rA96uHGbbbAY_J2RHn-BOHWA_X6CLYsfibf52ir9eX1eKdLD_fPhbzJXGc60pYCE7RnnMn-HfbFNLTMGjHhy5IKxy4TsJgteqklkIxkEMvKKUhMPAdMD5Fd6feduh370s167TP2zZptKa8B6l0C9FTyOVUSvbB7HLc2HwwFMyRkDkRMo2QORIyHf8DXZxWrw</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Fisher, David</creator><creator>Margulis, Gregory</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20051001</creationdate><title>Almost isometric actions, property (T), and local rigidity</title><author>Fisher, David ; Margulis, Gregory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-2ffc71933c43b37246e1fd8c3d5f6a4c0c560da87568647206d94111ff20e5023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Lie groups</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fisher, David</creatorcontrib><creatorcontrib>Margulis, Gregory</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fisher, David</au><au>Margulis, Gregory</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Almost isometric actions, property (T), and local rigidity</atitle><jtitle>Inventiones mathematicae</jtitle><date>2005-10-01</date><risdate>2005</risdate><volume>162</volume><issue>1</issue><spage>19</spage><epage>80</epage><pages>19-80</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>Let Γ be a discrete group with property (T) of Kazhdan. We prove that any Riemannian isometric action of Γ on a compact manifold X is locally rigid. We also prove a more general foliated version of this result. The foliated result is used in our proof of local rigidity for standard actions of higher rank semisimple Lie groups and their lattices in [FM2]. One definition of property (T) is that a group Γ has property (T) if every isometric Γ action on a Hilbert space has a fixed point. We prove a variety of strengthenings of this fixed point properties for groups with property (T). Some of these are used in the proofs of our local rigidity theorems. [PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00222-004-0437-5</doi><tpages>62</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-9910
ispartof Inventiones mathematicae, 2005-10, Vol.162 (1), p.19-80
issn 0020-9910
1432-1297
language eng
recordid cdi_proquest_journals_881390678
source Springer Nature - Complete Springer Journals
subjects Lie groups
Studies
title Almost isometric actions, property (T), and local rigidity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A30%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Almost%20isometric%20actions,%20property%20(T),%20and%20local%20rigidity&rft.jtitle=Inventiones%20mathematicae&rft.au=Fisher,%20David&rft.date=2005-10-01&rft.volume=162&rft.issue=1&rft.spage=19&rft.epage=80&rft.pages=19-80&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-004-0437-5&rft_dat=%3Cproquest_cross%3E2418690071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881390678&rft_id=info:pmid/&rfr_iscdi=true