Almost isometric actions, property (T), and local rigidity
Let Γ be a discrete group with property (T) of Kazhdan. We prove that any Riemannian isometric action of Γ on a compact manifold X is locally rigid. We also prove a more general foliated version of this result. The foliated result is used in our proof of local rigidity for standard actions of higher...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2005-10, Vol.162 (1), p.19-80 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 80 |
---|---|
container_issue | 1 |
container_start_page | 19 |
container_title | Inventiones mathematicae |
container_volume | 162 |
creator | Fisher, David Margulis, Gregory |
description | Let Γ be a discrete group with property (T) of Kazhdan. We prove that any Riemannian isometric action of Γ on a compact manifold X is locally rigid. We also prove a more general foliated version of this result. The foliated result is used in our proof of local rigidity for standard actions of higher rank semisimple Lie groups and their lattices in [FM2]. One definition of property (T) is that a group Γ has property (T) if every isometric Γ action on a Hilbert space has a fixed point. We prove a variety of strengthenings of this fixed point properties for groups with property (T). Some of these are used in the proofs of our local rigidity theorems. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s00222-004-0437-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_881390678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418690071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-2ffc71933c43b37246e1fd8c3d5f6a4c0c560da87568647206d94111ff20e5023</originalsourceid><addsrcrecordid>eNotkMtKQzEYhIMoWKsP4C64Umj0z-UkOe5K8QYFN3UdYk4iKadNTdJF396UuprFDDPDh9AthUcKoJ4KAGOMAAgCgivSnaEJFZwRynp1jibNBtL3FC7RVSlrgGYqNkHP83GTSsWxpI2vOTpsXY1pW2Z4l9PO53rA96uHGbbbAY_J2RHn-BOHWA_X6CLYsfibf52ir9eX1eKdLD_fPhbzJXGc60pYCE7RnnMn-HfbFNLTMGjHhy5IKxy4TsJgteqklkIxkEMvKKUhMPAdMD5Fd6feduh370s167TP2zZptKa8B6l0C9FTyOVUSvbB7HLc2HwwFMyRkDkRMo2QORIyHf8DXZxWrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881390678</pqid></control><display><type>article</type><title>Almost isometric actions, property (T), and local rigidity</title><source>Springer Nature - Complete Springer Journals</source><creator>Fisher, David ; Margulis, Gregory</creator><creatorcontrib>Fisher, David ; Margulis, Gregory</creatorcontrib><description>Let Γ be a discrete group with property (T) of Kazhdan. We prove that any Riemannian isometric action of Γ on a compact manifold X is locally rigid. We also prove a more general foliated version of this result. The foliated result is used in our proof of local rigidity for standard actions of higher rank semisimple Lie groups and their lattices in [FM2]. One definition of property (T) is that a group Γ has property (T) if every isometric Γ action on a Hilbert space has a fixed point. We prove a variety of strengthenings of this fixed point properties for groups with property (T). Some of these are used in the proofs of our local rigidity theorems. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-004-0437-5</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Lie groups ; Studies</subject><ispartof>Inventiones mathematicae, 2005-10, Vol.162 (1), p.19-80</ispartof><rights>Springer-Verlag 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-2ffc71933c43b37246e1fd8c3d5f6a4c0c560da87568647206d94111ff20e5023</citedby><cites>FETCH-LOGICAL-c338t-2ffc71933c43b37246e1fd8c3d5f6a4c0c560da87568647206d94111ff20e5023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Fisher, David</creatorcontrib><creatorcontrib>Margulis, Gregory</creatorcontrib><title>Almost isometric actions, property (T), and local rigidity</title><title>Inventiones mathematicae</title><description>Let Γ be a discrete group with property (T) of Kazhdan. We prove that any Riemannian isometric action of Γ on a compact manifold X is locally rigid. We also prove a more general foliated version of this result. The foliated result is used in our proof of local rigidity for standard actions of higher rank semisimple Lie groups and their lattices in [FM2]. One definition of property (T) is that a group Γ has property (T) if every isometric Γ action on a Hilbert space has a fixed point. We prove a variety of strengthenings of this fixed point properties for groups with property (T). Some of these are used in the proofs of our local rigidity theorems. [PUBLICATION ABSTRACT]</description><subject>Lie groups</subject><subject>Studies</subject><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkMtKQzEYhIMoWKsP4C64Umj0z-UkOe5K8QYFN3UdYk4iKadNTdJF396UuprFDDPDh9AthUcKoJ4KAGOMAAgCgivSnaEJFZwRynp1jibNBtL3FC7RVSlrgGYqNkHP83GTSsWxpI2vOTpsXY1pW2Z4l9PO53rA96uHGbbbAY_J2RHn-BOHWA_X6CLYsfibf52ir9eX1eKdLD_fPhbzJXGc60pYCE7RnnMn-HfbFNLTMGjHhy5IKxy4TsJgteqklkIxkEMvKKUhMPAdMD5Fd6feduh370s167TP2zZptKa8B6l0C9FTyOVUSvbB7HLc2HwwFMyRkDkRMo2QORIyHf8DXZxWrw</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Fisher, David</creator><creator>Margulis, Gregory</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20051001</creationdate><title>Almost isometric actions, property (T), and local rigidity</title><author>Fisher, David ; Margulis, Gregory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-2ffc71933c43b37246e1fd8c3d5f6a4c0c560da87568647206d94111ff20e5023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Lie groups</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fisher, David</creatorcontrib><creatorcontrib>Margulis, Gregory</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fisher, David</au><au>Margulis, Gregory</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Almost isometric actions, property (T), and local rigidity</atitle><jtitle>Inventiones mathematicae</jtitle><date>2005-10-01</date><risdate>2005</risdate><volume>162</volume><issue>1</issue><spage>19</spage><epage>80</epage><pages>19-80</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>Let Γ be a discrete group with property (T) of Kazhdan. We prove that any Riemannian isometric action of Γ on a compact manifold X is locally rigid. We also prove a more general foliated version of this result. The foliated result is used in our proof of local rigidity for standard actions of higher rank semisimple Lie groups and their lattices in [FM2]. One definition of property (T) is that a group Γ has property (T) if every isometric Γ action on a Hilbert space has a fixed point. We prove a variety of strengthenings of this fixed point properties for groups with property (T). Some of these are used in the proofs of our local rigidity theorems. [PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00222-004-0437-5</doi><tpages>62</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-9910 |
ispartof | Inventiones mathematicae, 2005-10, Vol.162 (1), p.19-80 |
issn | 0020-9910 1432-1297 |
language | eng |
recordid | cdi_proquest_journals_881390678 |
source | Springer Nature - Complete Springer Journals |
subjects | Lie groups Studies |
title | Almost isometric actions, property (T), and local rigidity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A30%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Almost%20isometric%20actions,%20property%20(T),%20and%20local%20rigidity&rft.jtitle=Inventiones%20mathematicae&rft.au=Fisher,%20David&rft.date=2005-10-01&rft.volume=162&rft.issue=1&rft.spage=19&rft.epage=80&rft.pages=19-80&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-004-0437-5&rft_dat=%3Cproquest_cross%3E2418690071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881390678&rft_id=info:pmid/&rfr_iscdi=true |