Almost isometric actions, property (T), and local rigidity

Let Γ be a discrete group with property (T) of Kazhdan. We prove that any Riemannian isometric action of Γ on a compact manifold X is locally rigid. We also prove a more general foliated version of this result. The foliated result is used in our proof of local rigidity for standard actions of higher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 2005-10, Vol.162 (1), p.19-80
Hauptverfasser: Fisher, David, Margulis, Gregory
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Γ be a discrete group with property (T) of Kazhdan. We prove that any Riemannian isometric action of Γ on a compact manifold X is locally rigid. We also prove a more general foliated version of this result. The foliated result is used in our proof of local rigidity for standard actions of higher rank semisimple Lie groups and their lattices in [FM2]. One definition of property (T) is that a group Γ has property (T) if every isometric Γ action on a Hilbert space has a fixed point. We prove a variety of strengthenings of this fixed point properties for groups with property (T). Some of these are used in the proofs of our local rigidity theorems. [PUBLICATION ABSTRACT]
ISSN:0020-9910
1432-1297
DOI:10.1007/s00222-004-0437-5