FFT-based high-performance spherical harmonic transformation
Spherical harmonic transformation is of practical interest in geodesy for transformation of globally distributed quantities such as gravity between space and frequency domains. The increasing spatial resolution of the latest and forthcoming gravitational models pose true computational challenges for...
Gespeichert in:
Veröffentlicht in: | Studia geophysica et geodaetica 2011-07, Vol.55 (3), p.489-500 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 500 |
---|---|
container_issue | 3 |
container_start_page | 489 |
container_title | Studia geophysica et geodaetica |
container_volume | 55 |
creator | Gruber, Christian Novák, Pavel Sebera, Josef |
description | Spherical harmonic transformation is of practical interest in geodesy for transformation of globally distributed quantities such as gravity between space and frequency domains. The increasing spatial resolution of the latest and forthcoming gravitational models pose true computational challenges for classical algorithms since serious numerical instabilities arise during the computation of the respective base functions of the spherical harmonic expansion. A possible solution is the evaluation of the associated Legendre functions in the Fourier domain where numerical instabilities can be circumvented by an independent frequency-wise scaling of numerical coefficients into a numerically suitable double precision range. It is then rather straightforward to commit global fast data transformation into the Fourier domain and to evaluate subsequently spherical harmonic coefficients. For the inverse, the computation of respective Fourier coefficients from a given spherical harmonic model is performed as an inverse Fast Fourier Transform into globally distributed data points. The two-step formulation turns out to be stable even for very high resolutions as well as efficient when using state-of-the-art shared memory/multi-core architectures. In principle, any functional of the geopotential can be computed in this way. To give an example for the overall performance of the algorithm, we transformed an equiangular 1 arcmin grid of terrain elevation data corresponding to spherical harmonic degree and order 10800. |
doi_str_mv | 10.1007/s11200-011-0029-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_881357610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418393761</sourcerecordid><originalsourceid>FETCH-LOGICAL-a338t-12e6bd0ff714c9332ba102cad3b98b93874a5063b08291a0ee3fb137dd35108f3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9gidsOdr3FsiQVVFJAqsZTZshO7SdUmwU6H_nsCQWJiuuX73tM9xm4R7hGgeEiIAoADIgcQmp_O2AzzgjhKIc_ZDIA0J5T6kl2ltIMRlCRn7HG12nBnk6-yutnWvPcxdPFg29Jnqa99bEq7z2obD13blNkQbZt-gKHp2mt2Eew--ZvfO2cfq-fN8pWv31_elk9rbonUwFF46SoIocBFqYmEswiitBU5rZwmVSxsDpIcKKHRgvcUHFJRVZQjqEBzdjfl9rH7PPo0mF13jO1YaZRCyguJMEI4QWXsUoo-mD42BxtPBsF8b2Smjcz4uvneyJxGR0xOGtl26-Nf8P_SF6XpaTo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881357610</pqid></control><display><type>article</type><title>FFT-based high-performance spherical harmonic transformation</title><source>Springer Nature - Complete Springer Journals</source><creator>Gruber, Christian ; Novák, Pavel ; Sebera, Josef</creator><creatorcontrib>Gruber, Christian ; Novák, Pavel ; Sebera, Josef</creatorcontrib><description>Spherical harmonic transformation is of practical interest in geodesy for transformation of globally distributed quantities such as gravity between space and frequency domains. The increasing spatial resolution of the latest and forthcoming gravitational models pose true computational challenges for classical algorithms since serious numerical instabilities arise during the computation of the respective base functions of the spherical harmonic expansion. A possible solution is the evaluation of the associated Legendre functions in the Fourier domain where numerical instabilities can be circumvented by an independent frequency-wise scaling of numerical coefficients into a numerically suitable double precision range. It is then rather straightforward to commit global fast data transformation into the Fourier domain and to evaluate subsequently spherical harmonic coefficients. For the inverse, the computation of respective Fourier coefficients from a given spherical harmonic model is performed as an inverse Fast Fourier Transform into globally distributed data points. The two-step formulation turns out to be stable even for very high resolutions as well as efficient when using state-of-the-art shared memory/multi-core architectures. In principle, any functional of the geopotential can be computed in this way. To give an example for the overall performance of the algorithm, we transformed an equiangular 1 arcmin grid of terrain elevation data corresponding to spherical harmonic degree and order 10800.</description><identifier>ISSN: 0039-3169</identifier><identifier>EISSN: 1573-1626</identifier><identifier>DOI: 10.1007/s11200-011-0029-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Atmospheric Sciences ; Earth and Environmental Science ; Earth Sciences ; Fourier transforms ; Geodesy ; Geophysics/Geodesy ; Harmonic analysis ; Numerical analysis ; Structural Geology</subject><ispartof>Studia geophysica et geodaetica, 2011-07, Vol.55 (3), p.489-500</ispartof><rights>Institute of Geophysics of the ASCR, v.v.i 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a338t-12e6bd0ff714c9332ba102cad3b98b93874a5063b08291a0ee3fb137dd35108f3</citedby><cites>FETCH-LOGICAL-a338t-12e6bd0ff714c9332ba102cad3b98b93874a5063b08291a0ee3fb137dd35108f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11200-011-0029-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11200-011-0029-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gruber, Christian</creatorcontrib><creatorcontrib>Novák, Pavel</creatorcontrib><creatorcontrib>Sebera, Josef</creatorcontrib><title>FFT-based high-performance spherical harmonic transformation</title><title>Studia geophysica et geodaetica</title><addtitle>Stud Geophys Geod</addtitle><description>Spherical harmonic transformation is of practical interest in geodesy for transformation of globally distributed quantities such as gravity between space and frequency domains. The increasing spatial resolution of the latest and forthcoming gravitational models pose true computational challenges for classical algorithms since serious numerical instabilities arise during the computation of the respective base functions of the spherical harmonic expansion. A possible solution is the evaluation of the associated Legendre functions in the Fourier domain where numerical instabilities can be circumvented by an independent frequency-wise scaling of numerical coefficients into a numerically suitable double precision range. It is then rather straightforward to commit global fast data transformation into the Fourier domain and to evaluate subsequently spherical harmonic coefficients. For the inverse, the computation of respective Fourier coefficients from a given spherical harmonic model is performed as an inverse Fast Fourier Transform into globally distributed data points. The two-step formulation turns out to be stable even for very high resolutions as well as efficient when using state-of-the-art shared memory/multi-core architectures. In principle, any functional of the geopotential can be computed in this way. To give an example for the overall performance of the algorithm, we transformed an equiangular 1 arcmin grid of terrain elevation data corresponding to spherical harmonic degree and order 10800.</description><subject>Algorithms</subject><subject>Atmospheric Sciences</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fourier transforms</subject><subject>Geodesy</subject><subject>Geophysics/Geodesy</subject><subject>Harmonic analysis</subject><subject>Numerical analysis</subject><subject>Structural Geology</subject><issn>0039-3169</issn><issn>1573-1626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kDFPwzAQhS0EEqXwA9gidsOdr3FsiQVVFJAqsZTZshO7SdUmwU6H_nsCQWJiuuX73tM9xm4R7hGgeEiIAoADIgcQmp_O2AzzgjhKIc_ZDIA0J5T6kl2ltIMRlCRn7HG12nBnk6-yutnWvPcxdPFg29Jnqa99bEq7z2obD13blNkQbZt-gKHp2mt2Eew--ZvfO2cfq-fN8pWv31_elk9rbonUwFF46SoIocBFqYmEswiitBU5rZwmVSxsDpIcKKHRgvcUHFJRVZQjqEBzdjfl9rH7PPo0mF13jO1YaZRCyguJMEI4QWXsUoo-mD42BxtPBsF8b2Smjcz4uvneyJxGR0xOGtl26-Nf8P_SF6XpaTo</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Gruber, Christian</creator><creator>Novák, Pavel</creator><creator>Sebera, Josef</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20110701</creationdate><title>FFT-based high-performance spherical harmonic transformation</title><author>Gruber, Christian ; Novák, Pavel ; Sebera, Josef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a338t-12e6bd0ff714c9332ba102cad3b98b93874a5063b08291a0ee3fb137dd35108f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Atmospheric Sciences</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fourier transforms</topic><topic>Geodesy</topic><topic>Geophysics/Geodesy</topic><topic>Harmonic analysis</topic><topic>Numerical analysis</topic><topic>Structural Geology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gruber, Christian</creatorcontrib><creatorcontrib>Novák, Pavel</creatorcontrib><creatorcontrib>Sebera, Josef</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Studia geophysica et geodaetica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gruber, Christian</au><au>Novák, Pavel</au><au>Sebera, Josef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FFT-based high-performance spherical harmonic transformation</atitle><jtitle>Studia geophysica et geodaetica</jtitle><stitle>Stud Geophys Geod</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>55</volume><issue>3</issue><spage>489</spage><epage>500</epage><pages>489-500</pages><issn>0039-3169</issn><eissn>1573-1626</eissn><abstract>Spherical harmonic transformation is of practical interest in geodesy for transformation of globally distributed quantities such as gravity between space and frequency domains. The increasing spatial resolution of the latest and forthcoming gravitational models pose true computational challenges for classical algorithms since serious numerical instabilities arise during the computation of the respective base functions of the spherical harmonic expansion. A possible solution is the evaluation of the associated Legendre functions in the Fourier domain where numerical instabilities can be circumvented by an independent frequency-wise scaling of numerical coefficients into a numerically suitable double precision range. It is then rather straightforward to commit global fast data transformation into the Fourier domain and to evaluate subsequently spherical harmonic coefficients. For the inverse, the computation of respective Fourier coefficients from a given spherical harmonic model is performed as an inverse Fast Fourier Transform into globally distributed data points. The two-step formulation turns out to be stable even for very high resolutions as well as efficient when using state-of-the-art shared memory/multi-core architectures. In principle, any functional of the geopotential can be computed in this way. To give an example for the overall performance of the algorithm, we transformed an equiangular 1 arcmin grid of terrain elevation data corresponding to spherical harmonic degree and order 10800.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11200-011-0029-y</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-3169 |
ispartof | Studia geophysica et geodaetica, 2011-07, Vol.55 (3), p.489-500 |
issn | 0039-3169 1573-1626 |
language | eng |
recordid | cdi_proquest_journals_881357610 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Atmospheric Sciences Earth and Environmental Science Earth Sciences Fourier transforms Geodesy Geophysics/Geodesy Harmonic analysis Numerical analysis Structural Geology |
title | FFT-based high-performance spherical harmonic transformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FFT-based%20high-performance%20spherical%20harmonic%20transformation&rft.jtitle=Studia%20geophysica%20et%20geodaetica&rft.au=Gruber,%20Christian&rft.date=2011-07-01&rft.volume=55&rft.issue=3&rft.spage=489&rft.epage=500&rft.pages=489-500&rft.issn=0039-3169&rft.eissn=1573-1626&rft_id=info:doi/10.1007/s11200-011-0029-y&rft_dat=%3Cproquest_cross%3E2418393761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881357610&rft_id=info:pmid/&rfr_iscdi=true |