A note on Prandtl boundary layers

This note concerns nonlinear ill‐posedness of the Prandtl equation and an invalidity of asymptotic boundary layer expansions of incompressible fluid flows near a solid boundary. Our analysis is built upon recent remarkable linear illposedness results established by Gérard‐Varet and Dormy and an anal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2011-10, Vol.64 (10), p.1416-1438
Hauptverfasser: Guo, Yan, Nguyen, Toan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This note concerns nonlinear ill‐posedness of the Prandtl equation and an invalidity of asymptotic boundary layer expansions of incompressible fluid flows near a solid boundary. Our analysis is built upon recent remarkable linear illposedness results established by Gérard‐Varet and Dormy and an analysis by Guo and Tice. We show that the asymptotic boundary layer expansion is not valid for nonmonotonic shear layer flows in Sobolev spaces. We also introduce a notion of weak well‐posedness and prove that the nonlinear Prandtl equation is not well‐posed in this sense near nonstationary and nonmonotonic shear flows. On the other hand, we are able to verify that Oleinik's monotonic solutions are well‐posed. © 2011 Wiley Periodicals, Inc.
ISSN:0010-3640
1097-0312
DOI:10.1002/cpa.20377