On extending de Bruijn sequences
We give a complete proof of the following theorem: Every de Bruijn sequence of order n in at least three symbols can be extended to a de Bruijn sequence of order n + 1 . Every de Bruijn sequence of order n in two symbols can not be extended to order n + 1 , but it can be extended to order n + 2 . ►...
Gespeichert in:
Veröffentlicht in: | Information processing letters 2011-09, Vol.111 (18), p.930-932 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a complete proof of the following theorem:
Every de Bruijn sequence of order
n in at least three symbols can be extended to a de Bruijn sequence of order
n
+
1
. Every de Bruijn sequence of order
n in two symbols can
not be extended to order
n
+
1
, but it can be extended to order
n
+
2
.
► De Bruijn sequences in at least three symbols can be extended to the next order. ► De Bruijn sequences in two symbols can
not be extended to the next order. ► De Bruijn sequences in two symbols can be extended to two orders ahead. |
---|---|
ISSN: | 0020-0190 1872-6119 |
DOI: | 10.1016/j.ipl.2011.06.013 |