On extending de Bruijn sequences

We give a complete proof of the following theorem: Every de Bruijn sequence of order n in at least three symbols can be extended to a de Bruijn sequence of order n + 1 . Every de Bruijn sequence of order n in two symbols can not be extended to order n + 1 , but it can be extended to order n + 2 . ►...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 2011-09, Vol.111 (18), p.930-932
Hauptverfasser: Becher, Verónica, Heiber, Pablo Ariel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a complete proof of the following theorem: Every de Bruijn sequence of order n in at least three symbols can be extended to a de Bruijn sequence of order n + 1 . Every de Bruijn sequence of order n in two symbols can not be extended to order n + 1 , but it can be extended to order n + 2 . ► De Bruijn sequences in at least three symbols can be extended to the next order. ► De Bruijn sequences in two symbols can not be extended to the next order. ► De Bruijn sequences in two symbols can be extended to two orders ahead.
ISSN:0020-0190
1872-6119
DOI:10.1016/j.ipl.2011.06.013