Robust Optimization of Fixed Points of Nonlinear Discrete Time Systems with Uncertain Parameters

This contribution extends the normal vector method for the optimization of parametrically uncertain dynamical systems to a general class of nonlinear discrete time systems. Essentially, normal vectors are used to state constraints on dynamical properties of fixed points in the optimization of discre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on applied dynamical systems 2010-01, Vol.9 (2), p.357-390
Hauptverfasser: Kastsian, Darya, Mönnigmann, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This contribution extends the normal vector method for the optimization of parametrically uncertain dynamical systems to a general class of nonlinear discrete time systems. Essentially, normal vectors are used to state constraints on dynamical properties of fixed points in the optimization of discrete time dynamical systems. In a typical application of the method, a technical dynamical system is optimized with respect to an economic profit function, while the normal vector constraints are used to guarantee the stability of the optimal fixed point. We derive normal vector systems for flip, fold, and Neimark-Sacker bifurcation points, because these bifurcation points constitute the stability boundary of a large class of discrete time systems. In addition, we derive normal vector systems for a related type of critical point that can be used to ensure a user-specified disturbance rejection rate in the optimization of parametrically uncertain systems. We illustrate the method by applying it to the optimization of a discrete time supply chain model and a discretized fermentation process model. [PUBLICATION ABSTRACT]
ISSN:1536-0040
1536-0040
DOI:10.1137/09075696X