Low-Temperature Differential Scanning Calorimetry of an Al-Mg-Si Alloy

The clustering behavior at room temperature of a pure ternary Al-0.59 wt pct Mg-0.82 wt pct Si alloy was investigated by low-temperature differential scanning calorimetry (DSC). We find three clustering reactions that take place in two stages. The first two reactions are linked to each other and are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2011-07, Vol.42 (7), p.1960-1964
Hauptverfasser: Chang, C. S. T., Banhart, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The clustering behavior at room temperature of a pure ternary Al-0.59 wt pct Mg-0.82 wt pct Si alloy was investigated by low-temperature differential scanning calorimetry (DSC). We find three clustering reactions that take place in two stages. The first two reactions are linked to each other and are completed after 1 hour. The third reaction starts around 1 hour after quenching and is completed after 2 weeks. Only the latter reaction exhibits a strong shift of the peak position of the thermal signal, indicating a change in the activation energy during aging at room temperature caused by changing solute supersaturation or increasing trapping of vacancies. The first two stages are closely linked to the known adverse effect of room-temperature preaging on the ensuing age-hardening step, since 60 to 80 pct of cluster formation is sufficient to establish the full negative effect.
ISSN:1073-5623
1543-1940
DOI:10.1007/s11661-010-0596-5