A Beale–Kato–Majda Criterion for Three Dimensional Compressible Viscous Heat-Conductive Flows

We prove a blow-up criterion in terms of the upper bound of ( ρ , ρ −1 , θ ) for a strong solution to three dimensional compressible viscous heat-conductive flows. The main ingredient of the proof is an a priori estimate for a quantity independently introduced in Haspot (Regularity of weak solutions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2011-08, Vol.201 (2), p.727-742
Hauptverfasser: Sun, Yongzhong, Wang, Chao, Zhang, Zhifei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a blow-up criterion in terms of the upper bound of ( ρ , ρ −1 , θ ) for a strong solution to three dimensional compressible viscous heat-conductive flows. The main ingredient of the proof is an a priori estimate for a quantity independently introduced in Haspot (Regularity of weak solutions of the compressible isentropic Navier–Stokes equation, arXiv:1001.1581, 2010 ) and Sun et al. (J Math Pure Appl 95:36–47, 2011 ), whose divergence can be viewed as the effective viscous flux.
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-011-0407-1