Investigating the role of Ca2+-binding site IV in barnacle troponin C
Two genetically engineered, recombinant versions of native barnacle troponin C (TnC) (BTnC,) were created from the bacterially expressed, recombinant, wild-type BTnC (BTnCWT) to investigate the role of the Ca(2+)-specific sites in force regulation. The mutant BTnC4- contains a single amino acid muta...
Gespeichert in:
Veröffentlicht in: | Pflügers Archiv 2000-03, Vol.439 (5), p.600-609 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two genetically engineered, recombinant versions of native barnacle troponin C (TnC) (BTnC,) were created from the bacterially expressed, recombinant, wild-type BTnC (BTnCWT) to investigate the role of the Ca(2+)-specific sites in force regulation. The mutant BTnC4- contains a single amino acid mutation in site IV which results in the inactivation of site IV Ca2+ binding; the mutant BTnCTrunc lacks the last II amino acids of the C-terminal, and hence most of site IV. Both mutant proteins, which retain an active site II, bind to native TnC-depleted myofibrillar bundles and restore approximately 40% of the tension-generating capacity, about half that seen with purified native BTnC1 or BTnC2. This observation implies that the Mg(2+)-dependent interaction with troponin I (TnI) is at a location on TnC other than the C-terminal Ca(2+)-binding sites of BTnC2. Replacement with BTnCTrunc increases the sensitivity of the myofibrillar bundle to changes in ionic strength. Decreasing the ionic strength from 0.15 to 0.075 M increased force by 34%, a value much greater that the 8% increase seen in control bundles or bundles substituted with BTnC4-. These findings implicate TnC in determining this fibre characteristic, although this cannot be simply due to the alteration in the numbers of Ca2+ ions bound by the troponin complex since both BTnC4- and BTnCTrunc bind only 1 mol Ca2+/mol protein. |
---|---|
ISSN: | 0031-6768 1432-2013 |
DOI: | 10.1007/s004249900216 |