CFD Calculation of Pressure Rise Due to Internal AC and DC Arcing in a Closed Container

Computational fluid dynamics calculation results of pressure rise and propagation due to high-current arcs in a closed container are described. The pressure developments at different locations within the container are calculated by changing the current frequency (ac of 50 and 60 Hz, and dc) and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2011-07, Vol.26 (3), p.1700-1709
Hauptverfasser: Iwata, M., Tanaka, S., Ohtaka, T., Amakawa, T., Anantavanich, K., Pietsch, G. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1709
container_issue 3
container_start_page 1700
container_title IEEE transactions on power delivery
container_volume 26
creator Iwata, M.
Tanaka, S.
Ohtaka, T.
Amakawa, T.
Anantavanich, K.
Pietsch, G. J.
description Computational fluid dynamics calculation results of pressure rise and propagation due to high-current arcs in a closed container are described. The pressure developments at different locations within the container are calculated by changing the current frequency (ac of 50 and 60 Hz, and dc) and the electric arc energy input (up to approximately 1000 kJ). The local pressure oscillation amplitude for AC/50 Hz within the container exceeds that for dc. From the pressure oscillation period and the sound speed distribution in the container, the following conclusions are made. With growing electric arc energy, the pressure amplitude increases because of the resonance effect between the arc power oscillation and pressure waves reflected on the walls. When the electric arc energy reaches a value of around 500 kJ, the pressure amplitude rises significantly. This is considered attributable to superimposition of pressure waves near the container wall caused by low propagation velocity of the pressure waves near the wall. It is necessary to consider this phenomenon for public safety when designing electric power equipment.
doi_str_mv 10.1109/TPWRD.2011.2108320
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_873841575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5722071</ieee_id><sourcerecordid>2385778141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-55b1e35ed74ff0c824b50205e9e8aa7e196b7f9465b4377106abdd35f27de1293</originalsourceid><addsrcrecordid>eNpdkE1rGzEURUVpoW6aP9BuRKF0Nc7TlyUtzbhOAoEE4-Cl0My8KQoTyZVmFv33sWvjRVZvcc-98A4h3xjMGQN7s33abVZzDozNOQMjOHwgM2aFriQH85HMwBhVGav1Z_KllBcAkGBhRnb1ekVrP7TT4MeQIk09fcpYypSRbkJBupqQjonexxFz9ANd1tTHjq5qusxtiH9oiNTTekgFO1qnOPoQMX8ln3o_FLw-3yvyvP69re-qh8fb-3r5ULVSs7FSqmEoFHZa9j20hstGAQeFFo33GpldNLq3cqEaKbRmsPBN1wnVc90h41ZckV-n3X1Ofycso3sNpcVh8BHTVJwFtlBcKXUgf7wjX9J0_Kg4o4WRTOkjxE9Qm1MpGXu3z-HV53-OgTuadv9Nu6NpdzZ9KP08L_vS-qHPPrahXJpcCs6V1Afu-4kLiHiJleYcNBNvMISEBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>873841575</pqid></control><display><type>article</type><title>CFD Calculation of Pressure Rise Due to Internal AC and DC Arcing in a Closed Container</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Iwata, M. ; Tanaka, S. ; Ohtaka, T. ; Amakawa, T. ; Anantavanich, K. ; Pietsch, G. J.</creator><creatorcontrib>Iwata, M. ; Tanaka, S. ; Ohtaka, T. ; Amakawa, T. ; Anantavanich, K. ; Pietsch, G. J.</creatorcontrib><description>Computational fluid dynamics calculation results of pressure rise and propagation due to high-current arcs in a closed container are described. The pressure developments at different locations within the container are calculated by changing the current frequency (ac of 50 and 60 Hz, and dc) and the electric arc energy input (up to approximately 1000 kJ). The local pressure oscillation amplitude for AC/50 Hz within the container exceeds that for dc. From the pressure oscillation period and the sound speed distribution in the container, the following conclusions are made. With growing electric arc energy, the pressure amplitude increases because of the resonance effect between the arc power oscillation and pressure waves reflected on the walls. When the electric arc energy reaches a value of around 500 kJ, the pressure amplitude rises significantly. This is considered attributable to superimposition of pressure waves near the container wall caused by low propagation velocity of the pressure waves near the wall. It is necessary to consider this phenomenon for public safety when designing electric power equipment.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2011.2108320</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Amplitudes ; Applied sciences ; arc discharges ; Computational fluid dynamics ; Containers ; Direct current ; Disturbances. Regulation. Protection ; Electric power generation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Equations ; Exact sciences and technology ; explosions ; fault arcs ; Fluid dynamics ; Heating ; Mathematical analysis ; Mathematical model ; Oscillators ; power distribution faults ; Power electronics, power supplies ; Power networks and lines ; Power systems ; power transmission faults ; Pressure oscillations ; pressure rise ; Pressure waves ; Walls</subject><ispartof>IEEE transactions on power delivery, 2011-07, Vol.26 (3), p.1700-1709</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-55b1e35ed74ff0c824b50205e9e8aa7e196b7f9465b4377106abdd35f27de1293</citedby><cites>FETCH-LOGICAL-c471t-55b1e35ed74ff0c824b50205e9e8aa7e196b7f9465b4377106abdd35f27de1293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5722071$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5722071$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24322547$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Iwata, M.</creatorcontrib><creatorcontrib>Tanaka, S.</creatorcontrib><creatorcontrib>Ohtaka, T.</creatorcontrib><creatorcontrib>Amakawa, T.</creatorcontrib><creatorcontrib>Anantavanich, K.</creatorcontrib><creatorcontrib>Pietsch, G. J.</creatorcontrib><title>CFD Calculation of Pressure Rise Due to Internal AC and DC Arcing in a Closed Container</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>Computational fluid dynamics calculation results of pressure rise and propagation due to high-current arcs in a closed container are described. The pressure developments at different locations within the container are calculated by changing the current frequency (ac of 50 and 60 Hz, and dc) and the electric arc energy input (up to approximately 1000 kJ). The local pressure oscillation amplitude for AC/50 Hz within the container exceeds that for dc. From the pressure oscillation period and the sound speed distribution in the container, the following conclusions are made. With growing electric arc energy, the pressure amplitude increases because of the resonance effect between the arc power oscillation and pressure waves reflected on the walls. When the electric arc energy reaches a value of around 500 kJ, the pressure amplitude rises significantly. This is considered attributable to superimposition of pressure waves near the container wall caused by low propagation velocity of the pressure waves near the wall. It is necessary to consider this phenomenon for public safety when designing electric power equipment.</description><subject>Amplitudes</subject><subject>Applied sciences</subject><subject>arc discharges</subject><subject>Computational fluid dynamics</subject><subject>Containers</subject><subject>Direct current</subject><subject>Disturbances. Regulation. Protection</subject><subject>Electric power generation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>explosions</subject><subject>fault arcs</subject><subject>Fluid dynamics</subject><subject>Heating</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Oscillators</subject><subject>power distribution faults</subject><subject>Power electronics, power supplies</subject><subject>Power networks and lines</subject><subject>Power systems</subject><subject>power transmission faults</subject><subject>Pressure oscillations</subject><subject>pressure rise</subject><subject>Pressure waves</subject><subject>Walls</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1rGzEURUVpoW6aP9BuRKF0Nc7TlyUtzbhOAoEE4-Cl0My8KQoTyZVmFv33sWvjRVZvcc-98A4h3xjMGQN7s33abVZzDozNOQMjOHwgM2aFriQH85HMwBhVGav1Z_KllBcAkGBhRnb1ekVrP7TT4MeQIk09fcpYypSRbkJBupqQjonexxFz9ANd1tTHjq5qusxtiH9oiNTTekgFO1qnOPoQMX8ln3o_FLw-3yvyvP69re-qh8fb-3r5ULVSs7FSqmEoFHZa9j20hstGAQeFFo33GpldNLq3cqEaKbRmsPBN1wnVc90h41ZckV-n3X1Ofycso3sNpcVh8BHTVJwFtlBcKXUgf7wjX9J0_Kg4o4WRTOkjxE9Qm1MpGXu3z-HV53-OgTuadv9Nu6NpdzZ9KP08L_vS-qHPPrahXJpcCs6V1Afu-4kLiHiJleYcNBNvMISEBg</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Iwata, M.</creator><creator>Tanaka, S.</creator><creator>Ohtaka, T.</creator><creator>Amakawa, T.</creator><creator>Anantavanich, K.</creator><creator>Pietsch, G. J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20110701</creationdate><title>CFD Calculation of Pressure Rise Due to Internal AC and DC Arcing in a Closed Container</title><author>Iwata, M. ; Tanaka, S. ; Ohtaka, T. ; Amakawa, T. ; Anantavanich, K. ; Pietsch, G. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-55b1e35ed74ff0c824b50205e9e8aa7e196b7f9465b4377106abdd35f27de1293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amplitudes</topic><topic>Applied sciences</topic><topic>arc discharges</topic><topic>Computational fluid dynamics</topic><topic>Containers</topic><topic>Direct current</topic><topic>Disturbances. Regulation. Protection</topic><topic>Electric power generation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>explosions</topic><topic>fault arcs</topic><topic>Fluid dynamics</topic><topic>Heating</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Oscillators</topic><topic>power distribution faults</topic><topic>Power electronics, power supplies</topic><topic>Power networks and lines</topic><topic>Power systems</topic><topic>power transmission faults</topic><topic>Pressure oscillations</topic><topic>pressure rise</topic><topic>Pressure waves</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwata, M.</creatorcontrib><creatorcontrib>Tanaka, S.</creatorcontrib><creatorcontrib>Ohtaka, T.</creatorcontrib><creatorcontrib>Amakawa, T.</creatorcontrib><creatorcontrib>Anantavanich, K.</creatorcontrib><creatorcontrib>Pietsch, G. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Iwata, M.</au><au>Tanaka, S.</au><au>Ohtaka, T.</au><au>Amakawa, T.</au><au>Anantavanich, K.</au><au>Pietsch, G. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD Calculation of Pressure Rise Due to Internal AC and DC Arcing in a Closed Container</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>26</volume><issue>3</issue><spage>1700</spage><epage>1709</epage><pages>1700-1709</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>Computational fluid dynamics calculation results of pressure rise and propagation due to high-current arcs in a closed container are described. The pressure developments at different locations within the container are calculated by changing the current frequency (ac of 50 and 60 Hz, and dc) and the electric arc energy input (up to approximately 1000 kJ). The local pressure oscillation amplitude for AC/50 Hz within the container exceeds that for dc. From the pressure oscillation period and the sound speed distribution in the container, the following conclusions are made. With growing electric arc energy, the pressure amplitude increases because of the resonance effect between the arc power oscillation and pressure waves reflected on the walls. When the electric arc energy reaches a value of around 500 kJ, the pressure amplitude rises significantly. This is considered attributable to superimposition of pressure waves near the container wall caused by low propagation velocity of the pressure waves near the wall. It is necessary to consider this phenomenon for public safety when designing electric power equipment.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2011.2108320</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8977
ispartof IEEE transactions on power delivery, 2011-07, Vol.26 (3), p.1700-1709
issn 0885-8977
1937-4208
language eng
recordid cdi_proquest_journals_873841575
source IEEE/IET Electronic Library (IEL)
subjects Amplitudes
Applied sciences
arc discharges
Computational fluid dynamics
Containers
Direct current
Disturbances. Regulation. Protection
Electric power generation
Electrical engineering. Electrical power engineering
Electrical power engineering
Equations
Exact sciences and technology
explosions
fault arcs
Fluid dynamics
Heating
Mathematical analysis
Mathematical model
Oscillators
power distribution faults
Power electronics, power supplies
Power networks and lines
Power systems
power transmission faults
Pressure oscillations
pressure rise
Pressure waves
Walls
title CFD Calculation of Pressure Rise Due to Internal AC and DC Arcing in a Closed Container
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A06%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20Calculation%20of%20Pressure%20Rise%20Due%20to%20Internal%20AC%20and%20DC%20Arcing%20in%20a%20Closed%20Container&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Iwata,%20M.&rft.date=2011-07-01&rft.volume=26&rft.issue=3&rft.spage=1700&rft.epage=1709&rft.pages=1700-1709&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2011.2108320&rft_dat=%3Cproquest_RIE%3E2385778141%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=873841575&rft_id=info:pmid/&rft_ieee_id=5722071&rfr_iscdi=true