CFD Calculation of Pressure Rise Due to Internal AC and DC Arcing in a Closed Container

Computational fluid dynamics calculation results of pressure rise and propagation due to high-current arcs in a closed container are described. The pressure developments at different locations within the container are calculated by changing the current frequency (ac of 50 and 60 Hz, and dc) and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2011-07, Vol.26 (3), p.1700-1709
Hauptverfasser: Iwata, M., Tanaka, S., Ohtaka, T., Amakawa, T., Anantavanich, K., Pietsch, G. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Computational fluid dynamics calculation results of pressure rise and propagation due to high-current arcs in a closed container are described. The pressure developments at different locations within the container are calculated by changing the current frequency (ac of 50 and 60 Hz, and dc) and the electric arc energy input (up to approximately 1000 kJ). The local pressure oscillation amplitude for AC/50 Hz within the container exceeds that for dc. From the pressure oscillation period and the sound speed distribution in the container, the following conclusions are made. With growing electric arc energy, the pressure amplitude increases because of the resonance effect between the arc power oscillation and pressure waves reflected on the walls. When the electric arc energy reaches a value of around 500 kJ, the pressure amplitude rises significantly. This is considered attributable to superimposition of pressure waves near the container wall caused by low propagation velocity of the pressure waves near the wall. It is necessary to consider this phenomenon for public safety when designing electric power equipment.
ISSN:0885-8977
1937-4208
DOI:10.1109/TPWRD.2011.2108320