Effects of gas pockets on high-intensity focused ultrasound field

The paper describes experimental and numerical studies of the effects of gas pockets on a high-intensity focused ultrasound (HIFU) field. Air bubbles ranging from 0.8 to 2.4 mm in radius were produced in transparent polyacrylamide tissue-mimicking gels. A single-element 3.5-MHz HIFU transducer was u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2011-06, Vol.58 (6), p.1203-1210
Hauptverfasser: Hosseini, S. H. R., Xinliang Zheng, Vaezy, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper describes experimental and numerical studies of the effects of gas pockets on a high-intensity focused ultrasound (HIFU) field. Air bubbles ranging from 0.8 to 2.4 mm in radius were produced in transparent polyacrylamide tissue-mimicking gels. A single-element 3.5-MHz HIFU transducer was used to sonicate the gel phantoms. The changes in the HIFU beam pattern for air bubbles at different positions were visualized by the Schlieren method. Quantitative measurements of pressure at the HIFU focus by a calibrated needle hydrophone showed considerable reduction in the focal pressure with the presence of an air pocket. The presence of a single 1.2-mm-radius air bubble, at a 5 mm axial pre-focal position, reduced the focal intensity by 50% and increased the lateral focal dimension by 50%. For air bubbles at pre-focal position close to the focus, lesion formation was observed not at the theoretical focus, but in front of the air bubble and the air bubble became a barrier for the post-focal ultrasound propagation. The effects of reflection were simulated numerically and were compared with the experiments. The results can be used as guidelines for evaluation of potential safety concerns produced by trapped gas-pockets in various HIFU therapies.
ISSN:0885-3010
1525-8955
DOI:10.1109/TUFFC.2011.1930