Robust MT Tracking Based on M-Estimation and Interacting Multiple Model Algorithm

An algorithm for mobile terminal (MT) tracking based on time-of-arrival measurements in non-line-of-sight (NLOS) environments where NLOS measurements are modeled as positive outliers is proposed. Standard filters such as the extended Kalman filter (EKF) fail because they are sensitive to outliers. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2011-07, Vol.59 (7), p.3398-3409
Hauptverfasser: Hammes, Ulrich, Zoubir, Abdelhak M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3409
container_issue 7
container_start_page 3398
container_title IEEE transactions on signal processing
container_volume 59
creator Hammes, Ulrich
Zoubir, Abdelhak M
description An algorithm for mobile terminal (MT) tracking based on time-of-arrival measurements in non-line-of-sight (NLOS) environments where NLOS measurements are modeled as positive outliers is proposed. Standard filters such as the extended Kalman filter (EKF) fail because they are sensitive to outliers. In contrast, a robust EKF (REKF) always trades off efficiency in line-of-sight (LOS) versus robustness in NLOS environments and it is not possible to achieve both with the same filter. Instead, we propose to use two filters in parallel in a multiple model framework. An EKF yields high precision in LOS environments whereas an REKF provides robust state estimates when NLOS propagation comes into play. The state estimates of either filters are combined automatically based on the confidence we have for the underlying situation. It is shown via numerical studies that the proposed algorithm yields positioning accuracy similar to the EKF in LOS environments and even significantly outperforms the REKF in NLOS environments.
doi_str_mv 10.1109/TSP.2011.2138702
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_871757903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5743028</ieee_id><sourcerecordid>2374564791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-4625a979a83e35fc44ad69734dd26a07322b9b3b45140fae2bf1e8f23762d07b3</originalsourceid><addsrcrecordid>eNpdkM1Lw0AQxYMoWKt3wcsiiKfU2Y9kd4-1VC00-FXB27JJNjU1Teru5uB_75aWHjzNDPN7j5kXRZcYRhiDvFu8v4wIYDwimAoO5CgaYMlwDIynx6GHhMaJ4J-n0ZlzKwDMmEwH0etbl_fOo2yBFlYX33W7RPfamRJ1LcriqfP1Wvs6DLot0az1JlB-S2V94-tNY1DWlaZB42bZ2dp_rc-jk0o3zlzs6zD6eJguJk_x_PlxNhnP44Jh4WOWkkRLLrWghiZVwZguU8kpK0uSauCUkFzmNGcJZlBpQ_IKG1ERylNSAs_pMLrd-W5s99Mb59W6doVpGt2arndKCMmAg-CBvP5HrrretuE4JTjmCZdAAwQ7qLCdc9ZUamPD6_ZXYVDbhFVIWG0TVvuEg-Rm76tdoZvK6rao3UFHGBEJkzJwVzuuNsYc1glnFIigf76CgmY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871757903</pqid></control><display><type>article</type><title>Robust MT Tracking Based on M-Estimation and Interacting Multiple Model Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Hammes, Ulrich ; Zoubir, Abdelhak M</creator><creatorcontrib>Hammes, Ulrich ; Zoubir, Abdelhak M</creatorcontrib><description>An algorithm for mobile terminal (MT) tracking based on time-of-arrival measurements in non-line-of-sight (NLOS) environments where NLOS measurements are modeled as positive outliers is proposed. Standard filters such as the extended Kalman filter (EKF) fail because they are sensitive to outliers. In contrast, a robust EKF (REKF) always trades off efficiency in line-of-sight (LOS) versus robustness in NLOS environments and it is not possible to achieve both with the same filter. Instead, we propose to use two filters in parallel in a multiple model framework. An EKF yields high precision in LOS environments whereas an REKF provides robust state estimates when NLOS propagation comes into play. The state estimates of either filters are combined automatically based on the confidence we have for the underlying situation. It is shown via numerical studies that the proposed algorithm yields positioning accuracy similar to the EKF in LOS environments and even significantly outperforms the REKF in NLOS environments.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2011.2138702</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Computational modeling ; Confidence ; Covariance matrix ; Detection, estimation, filtering, equalization, prediction ; Estimates ; Exact sciences and technology ; Information, signal and communications theory ; Interacting multiple model algorithm ; Kalman filters ; M-estimation ; Mathematical models ; mobile terminal tracking ; NLOS mitigation ; Noise ; Nonlinear optics ; Robustness ; Signal and communications theory ; Signal processing algorithms ; Signal, noise ; Studies ; Telecommunications and information theory ; Terminals ; Tracking</subject><ispartof>IEEE transactions on signal processing, 2011-07, Vol.59 (7), p.3398-3409</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-4625a979a83e35fc44ad69734dd26a07322b9b3b45140fae2bf1e8f23762d07b3</citedby><cites>FETCH-LOGICAL-c418t-4625a979a83e35fc44ad69734dd26a07322b9b3b45140fae2bf1e8f23762d07b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5743028$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5743028$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24285499$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hammes, Ulrich</creatorcontrib><creatorcontrib>Zoubir, Abdelhak M</creatorcontrib><title>Robust MT Tracking Based on M-Estimation and Interacting Multiple Model Algorithm</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>An algorithm for mobile terminal (MT) tracking based on time-of-arrival measurements in non-line-of-sight (NLOS) environments where NLOS measurements are modeled as positive outliers is proposed. Standard filters such as the extended Kalman filter (EKF) fail because they are sensitive to outliers. In contrast, a robust EKF (REKF) always trades off efficiency in line-of-sight (LOS) versus robustness in NLOS environments and it is not possible to achieve both with the same filter. Instead, we propose to use two filters in parallel in a multiple model framework. An EKF yields high precision in LOS environments whereas an REKF provides robust state estimates when NLOS propagation comes into play. The state estimates of either filters are combined automatically based on the confidence we have for the underlying situation. It is shown via numerical studies that the proposed algorithm yields positioning accuracy similar to the EKF in LOS environments and even significantly outperforms the REKF in NLOS environments.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computational modeling</subject><subject>Confidence</subject><subject>Covariance matrix</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Interacting multiple model algorithm</subject><subject>Kalman filters</subject><subject>M-estimation</subject><subject>Mathematical models</subject><subject>mobile terminal tracking</subject><subject>NLOS mitigation</subject><subject>Noise</subject><subject>Nonlinear optics</subject><subject>Robustness</subject><subject>Signal and communications theory</subject><subject>Signal processing algorithms</subject><subject>Signal, noise</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Terminals</subject><subject>Tracking</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1Lw0AQxYMoWKt3wcsiiKfU2Y9kd4-1VC00-FXB27JJNjU1Teru5uB_75aWHjzNDPN7j5kXRZcYRhiDvFu8v4wIYDwimAoO5CgaYMlwDIynx6GHhMaJ4J-n0ZlzKwDMmEwH0etbl_fOo2yBFlYX33W7RPfamRJ1LcriqfP1Wvs6DLot0az1JlB-S2V94-tNY1DWlaZB42bZ2dp_rc-jk0o3zlzs6zD6eJguJk_x_PlxNhnP44Jh4WOWkkRLLrWghiZVwZguU8kpK0uSauCUkFzmNGcJZlBpQ_IKG1ERylNSAs_pMLrd-W5s99Mb59W6doVpGt2arndKCMmAg-CBvP5HrrretuE4JTjmCZdAAwQ7qLCdc9ZUamPD6_ZXYVDbhFVIWG0TVvuEg-Rm76tdoZvK6rao3UFHGBEJkzJwVzuuNsYc1glnFIigf76CgmY</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Hammes, Ulrich</creator><creator>Zoubir, Abdelhak M</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110701</creationdate><title>Robust MT Tracking Based on M-Estimation and Interacting Multiple Model Algorithm</title><author>Hammes, Ulrich ; Zoubir, Abdelhak M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-4625a979a83e35fc44ad69734dd26a07322b9b3b45140fae2bf1e8f23762d07b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computational modeling</topic><topic>Confidence</topic><topic>Covariance matrix</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Interacting multiple model algorithm</topic><topic>Kalman filters</topic><topic>M-estimation</topic><topic>Mathematical models</topic><topic>mobile terminal tracking</topic><topic>NLOS mitigation</topic><topic>Noise</topic><topic>Nonlinear optics</topic><topic>Robustness</topic><topic>Signal and communications theory</topic><topic>Signal processing algorithms</topic><topic>Signal, noise</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Terminals</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hammes, Ulrich</creatorcontrib><creatorcontrib>Zoubir, Abdelhak M</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hammes, Ulrich</au><au>Zoubir, Abdelhak M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust MT Tracking Based on M-Estimation and Interacting Multiple Model Algorithm</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>59</volume><issue>7</issue><spage>3398</spage><epage>3409</epage><pages>3398-3409</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>An algorithm for mobile terminal (MT) tracking based on time-of-arrival measurements in non-line-of-sight (NLOS) environments where NLOS measurements are modeled as positive outliers is proposed. Standard filters such as the extended Kalman filter (EKF) fail because they are sensitive to outliers. In contrast, a robust EKF (REKF) always trades off efficiency in line-of-sight (LOS) versus robustness in NLOS environments and it is not possible to achieve both with the same filter. Instead, we propose to use two filters in parallel in a multiple model framework. An EKF yields high precision in LOS environments whereas an REKF provides robust state estimates when NLOS propagation comes into play. The state estimates of either filters are combined automatically based on the confidence we have for the underlying situation. It is shown via numerical studies that the proposed algorithm yields positioning accuracy similar to the EKF in LOS environments and even significantly outperforms the REKF in NLOS environments.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2011.2138702</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2011-07, Vol.59 (7), p.3398-3409
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_871757903
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Computational modeling
Confidence
Covariance matrix
Detection, estimation, filtering, equalization, prediction
Estimates
Exact sciences and technology
Information, signal and communications theory
Interacting multiple model algorithm
Kalman filters
M-estimation
Mathematical models
mobile terminal tracking
NLOS mitigation
Noise
Nonlinear optics
Robustness
Signal and communications theory
Signal processing algorithms
Signal, noise
Studies
Telecommunications and information theory
Terminals
Tracking
title Robust MT Tracking Based on M-Estimation and Interacting Multiple Model Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A19%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20MT%20Tracking%20Based%20on%20M-Estimation%20and%20Interacting%20Multiple%20Model%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Hammes,%20Ulrich&rft.date=2011-07-01&rft.volume=59&rft.issue=7&rft.spage=3398&rft.epage=3409&rft.pages=3398-3409&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2011.2138702&rft_dat=%3Cproquest_RIE%3E2374564791%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=871757903&rft_id=info:pmid/&rft_ieee_id=5743028&rfr_iscdi=true