Robust MT Tracking Based on M-Estimation and Interacting Multiple Model Algorithm
An algorithm for mobile terminal (MT) tracking based on time-of-arrival measurements in non-line-of-sight (NLOS) environments where NLOS measurements are modeled as positive outliers is proposed. Standard filters such as the extended Kalman filter (EKF) fail because they are sensitive to outliers. I...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2011-07, Vol.59 (7), p.3398-3409 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3409 |
---|---|
container_issue | 7 |
container_start_page | 3398 |
container_title | IEEE transactions on signal processing |
container_volume | 59 |
creator | Hammes, Ulrich Zoubir, Abdelhak M |
description | An algorithm for mobile terminal (MT) tracking based on time-of-arrival measurements in non-line-of-sight (NLOS) environments where NLOS measurements are modeled as positive outliers is proposed. Standard filters such as the extended Kalman filter (EKF) fail because they are sensitive to outliers. In contrast, a robust EKF (REKF) always trades off efficiency in line-of-sight (LOS) versus robustness in NLOS environments and it is not possible to achieve both with the same filter. Instead, we propose to use two filters in parallel in a multiple model framework. An EKF yields high precision in LOS environments whereas an REKF provides robust state estimates when NLOS propagation comes into play. The state estimates of either filters are combined automatically based on the confidence we have for the underlying situation. It is shown via numerical studies that the proposed algorithm yields positioning accuracy similar to the EKF in LOS environments and even significantly outperforms the REKF in NLOS environments. |
doi_str_mv | 10.1109/TSP.2011.2138702 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_871757903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5743028</ieee_id><sourcerecordid>2374564791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-4625a979a83e35fc44ad69734dd26a07322b9b3b45140fae2bf1e8f23762d07b3</originalsourceid><addsrcrecordid>eNpdkM1Lw0AQxYMoWKt3wcsiiKfU2Y9kd4-1VC00-FXB27JJNjU1Teru5uB_75aWHjzNDPN7j5kXRZcYRhiDvFu8v4wIYDwimAoO5CgaYMlwDIynx6GHhMaJ4J-n0ZlzKwDMmEwH0etbl_fOo2yBFlYX33W7RPfamRJ1LcriqfP1Wvs6DLot0az1JlB-S2V94-tNY1DWlaZB42bZ2dp_rc-jk0o3zlzs6zD6eJguJk_x_PlxNhnP44Jh4WOWkkRLLrWghiZVwZguU8kpK0uSauCUkFzmNGcJZlBpQ_IKG1ERylNSAs_pMLrd-W5s99Mb59W6doVpGt2arndKCMmAg-CBvP5HrrretuE4JTjmCZdAAwQ7qLCdc9ZUamPD6_ZXYVDbhFVIWG0TVvuEg-Rm76tdoZvK6rao3UFHGBEJkzJwVzuuNsYc1glnFIigf76CgmY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871757903</pqid></control><display><type>article</type><title>Robust MT Tracking Based on M-Estimation and Interacting Multiple Model Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Hammes, Ulrich ; Zoubir, Abdelhak M</creator><creatorcontrib>Hammes, Ulrich ; Zoubir, Abdelhak M</creatorcontrib><description>An algorithm for mobile terminal (MT) tracking based on time-of-arrival measurements in non-line-of-sight (NLOS) environments where NLOS measurements are modeled as positive outliers is proposed. Standard filters such as the extended Kalman filter (EKF) fail because they are sensitive to outliers. In contrast, a robust EKF (REKF) always trades off efficiency in line-of-sight (LOS) versus robustness in NLOS environments and it is not possible to achieve both with the same filter. Instead, we propose to use two filters in parallel in a multiple model framework. An EKF yields high precision in LOS environments whereas an REKF provides robust state estimates when NLOS propagation comes into play. The state estimates of either filters are combined automatically based on the confidence we have for the underlying situation. It is shown via numerical studies that the proposed algorithm yields positioning accuracy similar to the EKF in LOS environments and even significantly outperforms the REKF in NLOS environments.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2011.2138702</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Computational modeling ; Confidence ; Covariance matrix ; Detection, estimation, filtering, equalization, prediction ; Estimates ; Exact sciences and technology ; Information, signal and communications theory ; Interacting multiple model algorithm ; Kalman filters ; M-estimation ; Mathematical models ; mobile terminal tracking ; NLOS mitigation ; Noise ; Nonlinear optics ; Robustness ; Signal and communications theory ; Signal processing algorithms ; Signal, noise ; Studies ; Telecommunications and information theory ; Terminals ; Tracking</subject><ispartof>IEEE transactions on signal processing, 2011-07, Vol.59 (7), p.3398-3409</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-4625a979a83e35fc44ad69734dd26a07322b9b3b45140fae2bf1e8f23762d07b3</citedby><cites>FETCH-LOGICAL-c418t-4625a979a83e35fc44ad69734dd26a07322b9b3b45140fae2bf1e8f23762d07b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5743028$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5743028$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24285499$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hammes, Ulrich</creatorcontrib><creatorcontrib>Zoubir, Abdelhak M</creatorcontrib><title>Robust MT Tracking Based on M-Estimation and Interacting Multiple Model Algorithm</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>An algorithm for mobile terminal (MT) tracking based on time-of-arrival measurements in non-line-of-sight (NLOS) environments where NLOS measurements are modeled as positive outliers is proposed. Standard filters such as the extended Kalman filter (EKF) fail because they are sensitive to outliers. In contrast, a robust EKF (REKF) always trades off efficiency in line-of-sight (LOS) versus robustness in NLOS environments and it is not possible to achieve both with the same filter. Instead, we propose to use two filters in parallel in a multiple model framework. An EKF yields high precision in LOS environments whereas an REKF provides robust state estimates when NLOS propagation comes into play. The state estimates of either filters are combined automatically based on the confidence we have for the underlying situation. It is shown via numerical studies that the proposed algorithm yields positioning accuracy similar to the EKF in LOS environments and even significantly outperforms the REKF in NLOS environments.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computational modeling</subject><subject>Confidence</subject><subject>Covariance matrix</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Interacting multiple model algorithm</subject><subject>Kalman filters</subject><subject>M-estimation</subject><subject>Mathematical models</subject><subject>mobile terminal tracking</subject><subject>NLOS mitigation</subject><subject>Noise</subject><subject>Nonlinear optics</subject><subject>Robustness</subject><subject>Signal and communications theory</subject><subject>Signal processing algorithms</subject><subject>Signal, noise</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Terminals</subject><subject>Tracking</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1Lw0AQxYMoWKt3wcsiiKfU2Y9kd4-1VC00-FXB27JJNjU1Teru5uB_75aWHjzNDPN7j5kXRZcYRhiDvFu8v4wIYDwimAoO5CgaYMlwDIynx6GHhMaJ4J-n0ZlzKwDMmEwH0etbl_fOo2yBFlYX33W7RPfamRJ1LcriqfP1Wvs6DLot0az1JlB-S2V94-tNY1DWlaZB42bZ2dp_rc-jk0o3zlzs6zD6eJguJk_x_PlxNhnP44Jh4WOWkkRLLrWghiZVwZguU8kpK0uSauCUkFzmNGcJZlBpQ_IKG1ERylNSAs_pMLrd-W5s99Mb59W6doVpGt2arndKCMmAg-CBvP5HrrretuE4JTjmCZdAAwQ7qLCdc9ZUamPD6_ZXYVDbhFVIWG0TVvuEg-Rm76tdoZvK6rao3UFHGBEJkzJwVzuuNsYc1glnFIigf76CgmY</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Hammes, Ulrich</creator><creator>Zoubir, Abdelhak M</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110701</creationdate><title>Robust MT Tracking Based on M-Estimation and Interacting Multiple Model Algorithm</title><author>Hammes, Ulrich ; Zoubir, Abdelhak M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-4625a979a83e35fc44ad69734dd26a07322b9b3b45140fae2bf1e8f23762d07b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computational modeling</topic><topic>Confidence</topic><topic>Covariance matrix</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Interacting multiple model algorithm</topic><topic>Kalman filters</topic><topic>M-estimation</topic><topic>Mathematical models</topic><topic>mobile terminal tracking</topic><topic>NLOS mitigation</topic><topic>Noise</topic><topic>Nonlinear optics</topic><topic>Robustness</topic><topic>Signal and communications theory</topic><topic>Signal processing algorithms</topic><topic>Signal, noise</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Terminals</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hammes, Ulrich</creatorcontrib><creatorcontrib>Zoubir, Abdelhak M</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hammes, Ulrich</au><au>Zoubir, Abdelhak M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust MT Tracking Based on M-Estimation and Interacting Multiple Model Algorithm</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>59</volume><issue>7</issue><spage>3398</spage><epage>3409</epage><pages>3398-3409</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>An algorithm for mobile terminal (MT) tracking based on time-of-arrival measurements in non-line-of-sight (NLOS) environments where NLOS measurements are modeled as positive outliers is proposed. Standard filters such as the extended Kalman filter (EKF) fail because they are sensitive to outliers. In contrast, a robust EKF (REKF) always trades off efficiency in line-of-sight (LOS) versus robustness in NLOS environments and it is not possible to achieve both with the same filter. Instead, we propose to use two filters in parallel in a multiple model framework. An EKF yields high precision in LOS environments whereas an REKF provides robust state estimates when NLOS propagation comes into play. The state estimates of either filters are combined automatically based on the confidence we have for the underlying situation. It is shown via numerical studies that the proposed algorithm yields positioning accuracy similar to the EKF in LOS environments and even significantly outperforms the REKF in NLOS environments.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2011.2138702</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2011-07, Vol.59 (7), p.3398-3409 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_journals_871757903 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Computational modeling Confidence Covariance matrix Detection, estimation, filtering, equalization, prediction Estimates Exact sciences and technology Information, signal and communications theory Interacting multiple model algorithm Kalman filters M-estimation Mathematical models mobile terminal tracking NLOS mitigation Noise Nonlinear optics Robustness Signal and communications theory Signal processing algorithms Signal, noise Studies Telecommunications and information theory Terminals Tracking |
title | Robust MT Tracking Based on M-Estimation and Interacting Multiple Model Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A19%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20MT%20Tracking%20Based%20on%20M-Estimation%20and%20Interacting%20Multiple%20Model%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Hammes,%20Ulrich&rft.date=2011-07-01&rft.volume=59&rft.issue=7&rft.spage=3398&rft.epage=3409&rft.pages=3398-3409&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2011.2138702&rft_dat=%3Cproquest_RIE%3E2374564791%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=871757903&rft_id=info:pmid/&rft_ieee_id=5743028&rfr_iscdi=true |