Robust MT Tracking Based on M-Estimation and Interacting Multiple Model Algorithm

An algorithm for mobile terminal (MT) tracking based on time-of-arrival measurements in non-line-of-sight (NLOS) environments where NLOS measurements are modeled as positive outliers is proposed. Standard filters such as the extended Kalman filter (EKF) fail because they are sensitive to outliers. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2011-07, Vol.59 (7), p.3398-3409
Hauptverfasser: Hammes, Ulrich, Zoubir, Abdelhak M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An algorithm for mobile terminal (MT) tracking based on time-of-arrival measurements in non-line-of-sight (NLOS) environments where NLOS measurements are modeled as positive outliers is proposed. Standard filters such as the extended Kalman filter (EKF) fail because they are sensitive to outliers. In contrast, a robust EKF (REKF) always trades off efficiency in line-of-sight (LOS) versus robustness in NLOS environments and it is not possible to achieve both with the same filter. Instead, we propose to use two filters in parallel in a multiple model framework. An EKF yields high precision in LOS environments whereas an REKF provides robust state estimates when NLOS propagation comes into play. The state estimates of either filters are combined automatically based on the confidence we have for the underlying situation. It is shown via numerical studies that the proposed algorithm yields positioning accuracy similar to the EKF in LOS environments and even significantly outperforms the REKF in NLOS environments.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2011.2138702