From the Boltzmann Equation to an Incompressible Navier–Stokes–Fourier System

We establish a Navier–Stokes–Fourier limit for solutions of the Boltzmann equation considered over any periodic spatial domain of dimension two or more. We do this for a broad class of collision kernels that relaxes the Grad small deflection cutoff condition for hard potentials and includes for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2010-06, Vol.196 (3), p.753-809
Hauptverfasser: David Levermore, C., Masmoudi, Nader
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish a Navier–Stokes–Fourier limit for solutions of the Boltzmann equation considered over any periodic spatial domain of dimension two or more. We do this for a broad class of collision kernels that relaxes the Grad small deflection cutoff condition for hard potentials and includes for the first time the case of soft potentials. Appropriately scaled families of DiPerna–Lions renormalized solutions are shown to have fluctuations that are compact. Every limit point is governed by a weak solution of a Navier–Stokes–Fourier system for all time.
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-009-0254-5