Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals

Semiconductor quantum dots and superparamagnetic iron oxide nanocrystals have physical properties that are well suited for biomedical imaging. Previously, we have shown that iron oxide nanocrystals embedded within the lipid core of micelles show optimized characteristics for quantitative imaging. He...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2009-03, Vol.4 (3), p.193-201
Hauptverfasser: Bruns, Oliver T, Ittrich, Harald, Peldschus, Kersten, Kaul, Michael G, Tromsdorf, Ulrich I, Lauterwasser, Joachim, Nikolic, Marija S, Mollwitz, Birgit, Merkel, Martin, Bigall, Nadja C, Sapra, Sameer, Reimer, Rudolph, Hohenberg, Heinz, Weller, Horst, Eychmüller, Alexander, Adam, Gerhard, Beisiegel, Ulrike, Heeren, Joerg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue 3
container_start_page 193
container_title Nature nanotechnology
container_volume 4
creator Bruns, Oliver T
Ittrich, Harald
Peldschus, Kersten
Kaul, Michael G
Tromsdorf, Ulrich I
Lauterwasser, Joachim
Nikolic, Marija S
Mollwitz, Birgit
Merkel, Martin
Bigall, Nadja C
Sapra, Sameer
Reimer, Rudolph
Hohenberg, Heinz
Weller, Horst
Eychmüller, Alexander
Adam, Gerhard
Beisiegel, Ulrike
Heeren, Joerg
description Semiconductor quantum dots and superparamagnetic iron oxide nanocrystals have physical properties that are well suited for biomedical imaging. Previously, we have shown that iron oxide nanocrystals embedded within the lipid core of micelles show optimized characteristics for quantitative imaging. Here, we embed quantum dots and superparamagnetic iron oxide nanocrystals in the core of lipoproteins—micelles that transport lipids and other hydrophobic substances in the blood—and show that it is possible to image and quantify the kinetics of lipoprotein metabolism in vivo using fluorescence and dynamic magnetic resonance imaging. The lipoproteins were taken up by liver cells in wild-type mice and displayed defective clearance in knock-out mice lacking a lipoprotein receptor or its ligand, indicating that the nanocrystals did not influence the specificity of the metabolic process. Using this strategy it is possible to study the clearance of lipoproteins in metabolic disorders and to improve the contrast in clinical imaging. Nanocrystals - such as quantum dots and magnetic nanoparticles - embedded in lipoproteins can be used to image and quantify the kinetics of lipid metabolism in vivo in a non-invasive manner using fluorescence and dynamic magnetic resonance imaging.
doi_str_mv 10.1038/nnano.2008.405
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_869891074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2364963971</sourcerecordid><originalsourceid>FETCH-LOGICAL-n232t-f04a8dd3390677d23076ee4cfeff0189e6a9cdb7ff7674781ae0b5ec9c3f544a3</originalsourceid><addsrcrecordid>eNp1kd1LwzAUxYMobk5ffZSgvnZL2zRJH2X4BQNB9Lmk7c3IaJOtSQf7703dnCD4dPPxOyc39yB0HZNpTFIxM0YaO00IEVNKshM0jjkVUZrm2elxLfgIXTi3IiRL8oSeo1GcJywTGRmj5h1kE3ndAm7l0oDXFe7A2WBbAdbhTJsllqbGm14ar5WupNfWYKtwo9d23VkP2uAWvCxto12Lw26rtxb3bpAO_VXdznnZuEt0pkKBq0OdoM-nx4_5S7R4e36dPywik6SJjxShUtR1-ARhnNdJSjgDoJUCpUgscmAyr-qSK8UZp1zEEkiZQZVXqcoolekE3e59Q3ebHpwvVrbvTHiyECwXeUw4DdDdf1BCg3HGBGOBujlQfdlCXay7MJNuV_xMMACzPeDClVlC92sTk2LIqPjOqBgyKkJGQXG_Vxjp-w6Oln-wL1H2kV8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476756866</pqid></control><display><type>article</type><title>Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Bruns, Oliver T ; Ittrich, Harald ; Peldschus, Kersten ; Kaul, Michael G ; Tromsdorf, Ulrich I ; Lauterwasser, Joachim ; Nikolic, Marija S ; Mollwitz, Birgit ; Merkel, Martin ; Bigall, Nadja C ; Sapra, Sameer ; Reimer, Rudolph ; Hohenberg, Heinz ; Weller, Horst ; Eychmüller, Alexander ; Adam, Gerhard ; Beisiegel, Ulrike ; Heeren, Joerg</creator><creatorcontrib>Bruns, Oliver T ; Ittrich, Harald ; Peldschus, Kersten ; Kaul, Michael G ; Tromsdorf, Ulrich I ; Lauterwasser, Joachim ; Nikolic, Marija S ; Mollwitz, Birgit ; Merkel, Martin ; Bigall, Nadja C ; Sapra, Sameer ; Reimer, Rudolph ; Hohenberg, Heinz ; Weller, Horst ; Eychmüller, Alexander ; Adam, Gerhard ; Beisiegel, Ulrike ; Heeren, Joerg</creatorcontrib><description>Semiconductor quantum dots and superparamagnetic iron oxide nanocrystals have physical properties that are well suited for biomedical imaging. Previously, we have shown that iron oxide nanocrystals embedded within the lipid core of micelles show optimized characteristics for quantitative imaging. Here, we embed quantum dots and superparamagnetic iron oxide nanocrystals in the core of lipoproteins—micelles that transport lipids and other hydrophobic substances in the blood—and show that it is possible to image and quantify the kinetics of lipoprotein metabolism in vivo using fluorescence and dynamic magnetic resonance imaging. The lipoproteins were taken up by liver cells in wild-type mice and displayed defective clearance in knock-out mice lacking a lipoprotein receptor or its ligand, indicating that the nanocrystals did not influence the specificity of the metabolic process. Using this strategy it is possible to study the clearance of lipoproteins in metabolic disorders and to improve the contrast in clinical imaging. Nanocrystals - such as quantum dots and magnetic nanoparticles - embedded in lipoproteins can be used to image and quantify the kinetics of lipid metabolism in vivo in a non-invasive manner using fluorescence and dynamic magnetic resonance imaging.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2008.405</identifier><identifier>PMID: 19265850</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Apolipoproteins E - deficiency ; Biomedical materials ; Blood ; Chemistry and Materials Science ; Crystals ; Dextrans ; Electrons ; Ferrosoferric Oxide ; Fluorescence ; Hepatocytes ; Hydrophobicity ; Injections, Intravenous ; Iron - administration &amp; dosage ; Iron - pharmacokinetics ; Iron - pharmacology ; Iron oxides ; Kinetics ; Lipid metabolism ; Lipids ; Lipoproteins ; Lipoproteins - metabolism ; Liver - drug effects ; Liver - metabolism ; Liver - ultrastructure ; Magnetic Resonance Imaging ; Magnetite Nanoparticles ; Materials Science ; Medical imaging ; Metabolic disorders ; Metabolism ; Mice ; Micelles ; Nanocrystals ; Nanoparticles ; Nanoparticles - chemistry ; Nanotechnology ; Nanotechnology and Microengineering ; Oxides - administration &amp; dosage ; Oxides - pharmacokinetics ; Oxides - pharmacology ; Physical properties ; Quantum Dots ; Receptors, LDL - deficiency ; Time Factors ; Tissue Distribution - drug effects</subject><ispartof>Nature nanotechnology, 2009-03, Vol.4 (3), p.193-201</ispartof><rights>Springer Nature Limited 2009</rights><rights>Nature Publishing Group 2009.</rights><rights>Copyright Nature Publishing Group Mar 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-n232t-f04a8dd3390677d23076ee4cfeff0189e6a9cdb7ff7674781ae0b5ec9c3f544a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19265850$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bruns, Oliver T</creatorcontrib><creatorcontrib>Ittrich, Harald</creatorcontrib><creatorcontrib>Peldschus, Kersten</creatorcontrib><creatorcontrib>Kaul, Michael G</creatorcontrib><creatorcontrib>Tromsdorf, Ulrich I</creatorcontrib><creatorcontrib>Lauterwasser, Joachim</creatorcontrib><creatorcontrib>Nikolic, Marija S</creatorcontrib><creatorcontrib>Mollwitz, Birgit</creatorcontrib><creatorcontrib>Merkel, Martin</creatorcontrib><creatorcontrib>Bigall, Nadja C</creatorcontrib><creatorcontrib>Sapra, Sameer</creatorcontrib><creatorcontrib>Reimer, Rudolph</creatorcontrib><creatorcontrib>Hohenberg, Heinz</creatorcontrib><creatorcontrib>Weller, Horst</creatorcontrib><creatorcontrib>Eychmüller, Alexander</creatorcontrib><creatorcontrib>Adam, Gerhard</creatorcontrib><creatorcontrib>Beisiegel, Ulrike</creatorcontrib><creatorcontrib>Heeren, Joerg</creatorcontrib><title>Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Semiconductor quantum dots and superparamagnetic iron oxide nanocrystals have physical properties that are well suited for biomedical imaging. Previously, we have shown that iron oxide nanocrystals embedded within the lipid core of micelles show optimized characteristics for quantitative imaging. Here, we embed quantum dots and superparamagnetic iron oxide nanocrystals in the core of lipoproteins—micelles that transport lipids and other hydrophobic substances in the blood—and show that it is possible to image and quantify the kinetics of lipoprotein metabolism in vivo using fluorescence and dynamic magnetic resonance imaging. The lipoproteins were taken up by liver cells in wild-type mice and displayed defective clearance in knock-out mice lacking a lipoprotein receptor or its ligand, indicating that the nanocrystals did not influence the specificity of the metabolic process. Using this strategy it is possible to study the clearance of lipoproteins in metabolic disorders and to improve the contrast in clinical imaging. Nanocrystals - such as quantum dots and magnetic nanoparticles - embedded in lipoproteins can be used to image and quantify the kinetics of lipid metabolism in vivo in a non-invasive manner using fluorescence and dynamic magnetic resonance imaging.</description><subject>Animals</subject><subject>Apolipoproteins E - deficiency</subject><subject>Biomedical materials</subject><subject>Blood</subject><subject>Chemistry and Materials Science</subject><subject>Crystals</subject><subject>Dextrans</subject><subject>Electrons</subject><subject>Ferrosoferric Oxide</subject><subject>Fluorescence</subject><subject>Hepatocytes</subject><subject>Hydrophobicity</subject><subject>Injections, Intravenous</subject><subject>Iron - administration &amp; dosage</subject><subject>Iron - pharmacokinetics</subject><subject>Iron - pharmacology</subject><subject>Iron oxides</subject><subject>Kinetics</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Lipoproteins</subject><subject>Lipoproteins - metabolism</subject><subject>Liver - drug effects</subject><subject>Liver - metabolism</subject><subject>Liver - ultrastructure</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetite Nanoparticles</subject><subject>Materials Science</subject><subject>Medical imaging</subject><subject>Metabolic disorders</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Micelles</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Oxides - administration &amp; dosage</subject><subject>Oxides - pharmacokinetics</subject><subject>Oxides - pharmacology</subject><subject>Physical properties</subject><subject>Quantum Dots</subject><subject>Receptors, LDL - deficiency</subject><subject>Time Factors</subject><subject>Tissue Distribution - drug effects</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kd1LwzAUxYMobk5ffZSgvnZL2zRJH2X4BQNB9Lmk7c3IaJOtSQf7703dnCD4dPPxOyc39yB0HZNpTFIxM0YaO00IEVNKshM0jjkVUZrm2elxLfgIXTi3IiRL8oSeo1GcJywTGRmj5h1kE3ndAm7l0oDXFe7A2WBbAdbhTJsllqbGm14ar5WupNfWYKtwo9d23VkP2uAWvCxto12Lw26rtxb3bpAO_VXdznnZuEt0pkKBq0OdoM-nx4_5S7R4e36dPywik6SJjxShUtR1-ARhnNdJSjgDoJUCpUgscmAyr-qSK8UZp1zEEkiZQZVXqcoolekE3e59Q3ebHpwvVrbvTHiyECwXeUw4DdDdf1BCg3HGBGOBujlQfdlCXay7MJNuV_xMMACzPeDClVlC92sTk2LIqPjOqBgyKkJGQXG_Vxjp-w6Oln-wL1H2kV8</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Bruns, Oliver T</creator><creator>Ittrich, Harald</creator><creator>Peldschus, Kersten</creator><creator>Kaul, Michael G</creator><creator>Tromsdorf, Ulrich I</creator><creator>Lauterwasser, Joachim</creator><creator>Nikolic, Marija S</creator><creator>Mollwitz, Birgit</creator><creator>Merkel, Martin</creator><creator>Bigall, Nadja C</creator><creator>Sapra, Sameer</creator><creator>Reimer, Rudolph</creator><creator>Hohenberg, Heinz</creator><creator>Weller, Horst</creator><creator>Eychmüller, Alexander</creator><creator>Adam, Gerhard</creator><creator>Beisiegel, Ulrike</creator><creator>Heeren, Joerg</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20090301</creationdate><title>Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals</title><author>Bruns, Oliver T ; Ittrich, Harald ; Peldschus, Kersten ; Kaul, Michael G ; Tromsdorf, Ulrich I ; Lauterwasser, Joachim ; Nikolic, Marija S ; Mollwitz, Birgit ; Merkel, Martin ; Bigall, Nadja C ; Sapra, Sameer ; Reimer, Rudolph ; Hohenberg, Heinz ; Weller, Horst ; Eychmüller, Alexander ; Adam, Gerhard ; Beisiegel, Ulrike ; Heeren, Joerg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-n232t-f04a8dd3390677d23076ee4cfeff0189e6a9cdb7ff7674781ae0b5ec9c3f544a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Apolipoproteins E - deficiency</topic><topic>Biomedical materials</topic><topic>Blood</topic><topic>Chemistry and Materials Science</topic><topic>Crystals</topic><topic>Dextrans</topic><topic>Electrons</topic><topic>Ferrosoferric Oxide</topic><topic>Fluorescence</topic><topic>Hepatocytes</topic><topic>Hydrophobicity</topic><topic>Injections, Intravenous</topic><topic>Iron - administration &amp; dosage</topic><topic>Iron - pharmacokinetics</topic><topic>Iron - pharmacology</topic><topic>Iron oxides</topic><topic>Kinetics</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Lipoproteins</topic><topic>Lipoproteins - metabolism</topic><topic>Liver - drug effects</topic><topic>Liver - metabolism</topic><topic>Liver - ultrastructure</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetite Nanoparticles</topic><topic>Materials Science</topic><topic>Medical imaging</topic><topic>Metabolic disorders</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Micelles</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Oxides - administration &amp; dosage</topic><topic>Oxides - pharmacokinetics</topic><topic>Oxides - pharmacology</topic><topic>Physical properties</topic><topic>Quantum Dots</topic><topic>Receptors, LDL - deficiency</topic><topic>Time Factors</topic><topic>Tissue Distribution - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruns, Oliver T</creatorcontrib><creatorcontrib>Ittrich, Harald</creatorcontrib><creatorcontrib>Peldschus, Kersten</creatorcontrib><creatorcontrib>Kaul, Michael G</creatorcontrib><creatorcontrib>Tromsdorf, Ulrich I</creatorcontrib><creatorcontrib>Lauterwasser, Joachim</creatorcontrib><creatorcontrib>Nikolic, Marija S</creatorcontrib><creatorcontrib>Mollwitz, Birgit</creatorcontrib><creatorcontrib>Merkel, Martin</creatorcontrib><creatorcontrib>Bigall, Nadja C</creatorcontrib><creatorcontrib>Sapra, Sameer</creatorcontrib><creatorcontrib>Reimer, Rudolph</creatorcontrib><creatorcontrib>Hohenberg, Heinz</creatorcontrib><creatorcontrib>Weller, Horst</creatorcontrib><creatorcontrib>Eychmüller, Alexander</creatorcontrib><creatorcontrib>Adam, Gerhard</creatorcontrib><creatorcontrib>Beisiegel, Ulrike</creatorcontrib><creatorcontrib>Heeren, Joerg</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruns, Oliver T</au><au>Ittrich, Harald</au><au>Peldschus, Kersten</au><au>Kaul, Michael G</au><au>Tromsdorf, Ulrich I</au><au>Lauterwasser, Joachim</au><au>Nikolic, Marija S</au><au>Mollwitz, Birgit</au><au>Merkel, Martin</au><au>Bigall, Nadja C</au><au>Sapra, Sameer</au><au>Reimer, Rudolph</au><au>Hohenberg, Heinz</au><au>Weller, Horst</au><au>Eychmüller, Alexander</au><au>Adam, Gerhard</au><au>Beisiegel, Ulrike</au><au>Heeren, Joerg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2009-03-01</date><risdate>2009</risdate><volume>4</volume><issue>3</issue><spage>193</spage><epage>201</epage><pages>193-201</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Semiconductor quantum dots and superparamagnetic iron oxide nanocrystals have physical properties that are well suited for biomedical imaging. Previously, we have shown that iron oxide nanocrystals embedded within the lipid core of micelles show optimized characteristics for quantitative imaging. Here, we embed quantum dots and superparamagnetic iron oxide nanocrystals in the core of lipoproteins—micelles that transport lipids and other hydrophobic substances in the blood—and show that it is possible to image and quantify the kinetics of lipoprotein metabolism in vivo using fluorescence and dynamic magnetic resonance imaging. The lipoproteins were taken up by liver cells in wild-type mice and displayed defective clearance in knock-out mice lacking a lipoprotein receptor or its ligand, indicating that the nanocrystals did not influence the specificity of the metabolic process. Using this strategy it is possible to study the clearance of lipoproteins in metabolic disorders and to improve the contrast in clinical imaging. Nanocrystals - such as quantum dots and magnetic nanoparticles - embedded in lipoproteins can be used to image and quantify the kinetics of lipid metabolism in vivo in a non-invasive manner using fluorescence and dynamic magnetic resonance imaging.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>19265850</pmid><doi>10.1038/nnano.2008.405</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2009-03, Vol.4 (3), p.193-201
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_journals_869891074
source MEDLINE; Nature; Alma/SFX Local Collection
subjects Animals
Apolipoproteins E - deficiency
Biomedical materials
Blood
Chemistry and Materials Science
Crystals
Dextrans
Electrons
Ferrosoferric Oxide
Fluorescence
Hepatocytes
Hydrophobicity
Injections, Intravenous
Iron - administration & dosage
Iron - pharmacokinetics
Iron - pharmacology
Iron oxides
Kinetics
Lipid metabolism
Lipids
Lipoproteins
Lipoproteins - metabolism
Liver - drug effects
Liver - metabolism
Liver - ultrastructure
Magnetic Resonance Imaging
Magnetite Nanoparticles
Materials Science
Medical imaging
Metabolic disorders
Metabolism
Mice
Micelles
Nanocrystals
Nanoparticles
Nanoparticles - chemistry
Nanotechnology
Nanotechnology and Microengineering
Oxides - administration & dosage
Oxides - pharmacokinetics
Oxides - pharmacology
Physical properties
Quantum Dots
Receptors, LDL - deficiency
Time Factors
Tissue Distribution - drug effects
title Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20magnetic%20resonance%20imaging%20and%20quantification%20of%20lipoprotein%20metabolism%20in%20vivo%20using%20nanocrystals&rft.jtitle=Nature%20nanotechnology&rft.au=Bruns,%20Oliver%20T&rft.date=2009-03-01&rft.volume=4&rft.issue=3&rft.spage=193&rft.epage=201&rft.pages=193-201&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2008.405&rft_dat=%3Cproquest_pubme%3E2364963971%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476756866&rft_id=info:pmid/19265850&rfr_iscdi=true