Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals
Semiconductor quantum dots and superparamagnetic iron oxide nanocrystals have physical properties that are well suited for biomedical imaging. Previously, we have shown that iron oxide nanocrystals embedded within the lipid core of micelles show optimized characteristics for quantitative imaging. He...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2009-03, Vol.4 (3), p.193-201 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 201 |
---|---|
container_issue | 3 |
container_start_page | 193 |
container_title | Nature nanotechnology |
container_volume | 4 |
creator | Bruns, Oliver T Ittrich, Harald Peldschus, Kersten Kaul, Michael G Tromsdorf, Ulrich I Lauterwasser, Joachim Nikolic, Marija S Mollwitz, Birgit Merkel, Martin Bigall, Nadja C Sapra, Sameer Reimer, Rudolph Hohenberg, Heinz Weller, Horst Eychmüller, Alexander Adam, Gerhard Beisiegel, Ulrike Heeren, Joerg |
description | Semiconductor quantum dots and superparamagnetic iron oxide nanocrystals have physical properties that are well suited for biomedical imaging. Previously, we have shown that iron oxide nanocrystals embedded within the lipid core of micelles show optimized characteristics for quantitative imaging. Here, we embed quantum dots and superparamagnetic iron oxide nanocrystals in the core of lipoproteins—micelles that transport lipids and other hydrophobic substances in the blood—and show that it is possible to image and quantify the kinetics of lipoprotein metabolism
in vivo
using fluorescence and dynamic magnetic resonance imaging. The lipoproteins were taken up by liver cells in wild-type mice and displayed defective clearance in knock-out mice lacking a lipoprotein receptor or its ligand, indicating that the nanocrystals did not influence the specificity of the metabolic process. Using this strategy it is possible to study the clearance of lipoproteins in metabolic disorders and to improve the contrast in clinical imaging.
Nanocrystals - such as quantum dots and magnetic nanoparticles - embedded in lipoproteins can be used to image and quantify the kinetics of lipid metabolism
in vivo
in a non-invasive manner using fluorescence and dynamic magnetic resonance imaging. |
doi_str_mv | 10.1038/nnano.2008.405 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_869891074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2364963971</sourcerecordid><originalsourceid>FETCH-LOGICAL-n232t-f04a8dd3390677d23076ee4cfeff0189e6a9cdb7ff7674781ae0b5ec9c3f544a3</originalsourceid><addsrcrecordid>eNp1kd1LwzAUxYMobk5ffZSgvnZL2zRJH2X4BQNB9Lmk7c3IaJOtSQf7703dnCD4dPPxOyc39yB0HZNpTFIxM0YaO00IEVNKshM0jjkVUZrm2elxLfgIXTi3IiRL8oSeo1GcJywTGRmj5h1kE3ndAm7l0oDXFe7A2WBbAdbhTJsllqbGm14ar5WupNfWYKtwo9d23VkP2uAWvCxto12Lw26rtxb3bpAO_VXdznnZuEt0pkKBq0OdoM-nx4_5S7R4e36dPywik6SJjxShUtR1-ARhnNdJSjgDoJUCpUgscmAyr-qSK8UZp1zEEkiZQZVXqcoolekE3e59Q3ebHpwvVrbvTHiyECwXeUw4DdDdf1BCg3HGBGOBujlQfdlCXay7MJNuV_xMMACzPeDClVlC92sTk2LIqPjOqBgyKkJGQXG_Vxjp-w6Oln-wL1H2kV8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476756866</pqid></control><display><type>article</type><title>Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Bruns, Oliver T ; Ittrich, Harald ; Peldschus, Kersten ; Kaul, Michael G ; Tromsdorf, Ulrich I ; Lauterwasser, Joachim ; Nikolic, Marija S ; Mollwitz, Birgit ; Merkel, Martin ; Bigall, Nadja C ; Sapra, Sameer ; Reimer, Rudolph ; Hohenberg, Heinz ; Weller, Horst ; Eychmüller, Alexander ; Adam, Gerhard ; Beisiegel, Ulrike ; Heeren, Joerg</creator><creatorcontrib>Bruns, Oliver T ; Ittrich, Harald ; Peldschus, Kersten ; Kaul, Michael G ; Tromsdorf, Ulrich I ; Lauterwasser, Joachim ; Nikolic, Marija S ; Mollwitz, Birgit ; Merkel, Martin ; Bigall, Nadja C ; Sapra, Sameer ; Reimer, Rudolph ; Hohenberg, Heinz ; Weller, Horst ; Eychmüller, Alexander ; Adam, Gerhard ; Beisiegel, Ulrike ; Heeren, Joerg</creatorcontrib><description>Semiconductor quantum dots and superparamagnetic iron oxide nanocrystals have physical properties that are well suited for biomedical imaging. Previously, we have shown that iron oxide nanocrystals embedded within the lipid core of micelles show optimized characteristics for quantitative imaging. Here, we embed quantum dots and superparamagnetic iron oxide nanocrystals in the core of lipoproteins—micelles that transport lipids and other hydrophobic substances in the blood—and show that it is possible to image and quantify the kinetics of lipoprotein metabolism
in vivo
using fluorescence and dynamic magnetic resonance imaging. The lipoproteins were taken up by liver cells in wild-type mice and displayed defective clearance in knock-out mice lacking a lipoprotein receptor or its ligand, indicating that the nanocrystals did not influence the specificity of the metabolic process. Using this strategy it is possible to study the clearance of lipoproteins in metabolic disorders and to improve the contrast in clinical imaging.
Nanocrystals - such as quantum dots and magnetic nanoparticles - embedded in lipoproteins can be used to image and quantify the kinetics of lipid metabolism
in vivo
in a non-invasive manner using fluorescence and dynamic magnetic resonance imaging.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2008.405</identifier><identifier>PMID: 19265850</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Apolipoproteins E - deficiency ; Biomedical materials ; Blood ; Chemistry and Materials Science ; Crystals ; Dextrans ; Electrons ; Ferrosoferric Oxide ; Fluorescence ; Hepatocytes ; Hydrophobicity ; Injections, Intravenous ; Iron - administration & dosage ; Iron - pharmacokinetics ; Iron - pharmacology ; Iron oxides ; Kinetics ; Lipid metabolism ; Lipids ; Lipoproteins ; Lipoproteins - metabolism ; Liver - drug effects ; Liver - metabolism ; Liver - ultrastructure ; Magnetic Resonance Imaging ; Magnetite Nanoparticles ; Materials Science ; Medical imaging ; Metabolic disorders ; Metabolism ; Mice ; Micelles ; Nanocrystals ; Nanoparticles ; Nanoparticles - chemistry ; Nanotechnology ; Nanotechnology and Microengineering ; Oxides - administration & dosage ; Oxides - pharmacokinetics ; Oxides - pharmacology ; Physical properties ; Quantum Dots ; Receptors, LDL - deficiency ; Time Factors ; Tissue Distribution - drug effects</subject><ispartof>Nature nanotechnology, 2009-03, Vol.4 (3), p.193-201</ispartof><rights>Springer Nature Limited 2009</rights><rights>Nature Publishing Group 2009.</rights><rights>Copyright Nature Publishing Group Mar 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-n232t-f04a8dd3390677d23076ee4cfeff0189e6a9cdb7ff7674781ae0b5ec9c3f544a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19265850$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bruns, Oliver T</creatorcontrib><creatorcontrib>Ittrich, Harald</creatorcontrib><creatorcontrib>Peldschus, Kersten</creatorcontrib><creatorcontrib>Kaul, Michael G</creatorcontrib><creatorcontrib>Tromsdorf, Ulrich I</creatorcontrib><creatorcontrib>Lauterwasser, Joachim</creatorcontrib><creatorcontrib>Nikolic, Marija S</creatorcontrib><creatorcontrib>Mollwitz, Birgit</creatorcontrib><creatorcontrib>Merkel, Martin</creatorcontrib><creatorcontrib>Bigall, Nadja C</creatorcontrib><creatorcontrib>Sapra, Sameer</creatorcontrib><creatorcontrib>Reimer, Rudolph</creatorcontrib><creatorcontrib>Hohenberg, Heinz</creatorcontrib><creatorcontrib>Weller, Horst</creatorcontrib><creatorcontrib>Eychmüller, Alexander</creatorcontrib><creatorcontrib>Adam, Gerhard</creatorcontrib><creatorcontrib>Beisiegel, Ulrike</creatorcontrib><creatorcontrib>Heeren, Joerg</creatorcontrib><title>Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Semiconductor quantum dots and superparamagnetic iron oxide nanocrystals have physical properties that are well suited for biomedical imaging. Previously, we have shown that iron oxide nanocrystals embedded within the lipid core of micelles show optimized characteristics for quantitative imaging. Here, we embed quantum dots and superparamagnetic iron oxide nanocrystals in the core of lipoproteins—micelles that transport lipids and other hydrophobic substances in the blood—and show that it is possible to image and quantify the kinetics of lipoprotein metabolism
in vivo
using fluorescence and dynamic magnetic resonance imaging. The lipoproteins were taken up by liver cells in wild-type mice and displayed defective clearance in knock-out mice lacking a lipoprotein receptor or its ligand, indicating that the nanocrystals did not influence the specificity of the metabolic process. Using this strategy it is possible to study the clearance of lipoproteins in metabolic disorders and to improve the contrast in clinical imaging.
Nanocrystals - such as quantum dots and magnetic nanoparticles - embedded in lipoproteins can be used to image and quantify the kinetics of lipid metabolism
in vivo
in a non-invasive manner using fluorescence and dynamic magnetic resonance imaging.</description><subject>Animals</subject><subject>Apolipoproteins E - deficiency</subject><subject>Biomedical materials</subject><subject>Blood</subject><subject>Chemistry and Materials Science</subject><subject>Crystals</subject><subject>Dextrans</subject><subject>Electrons</subject><subject>Ferrosoferric Oxide</subject><subject>Fluorescence</subject><subject>Hepatocytes</subject><subject>Hydrophobicity</subject><subject>Injections, Intravenous</subject><subject>Iron - administration & dosage</subject><subject>Iron - pharmacokinetics</subject><subject>Iron - pharmacology</subject><subject>Iron oxides</subject><subject>Kinetics</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Lipoproteins</subject><subject>Lipoproteins - metabolism</subject><subject>Liver - drug effects</subject><subject>Liver - metabolism</subject><subject>Liver - ultrastructure</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetite Nanoparticles</subject><subject>Materials Science</subject><subject>Medical imaging</subject><subject>Metabolic disorders</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Micelles</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Oxides - administration & dosage</subject><subject>Oxides - pharmacokinetics</subject><subject>Oxides - pharmacology</subject><subject>Physical properties</subject><subject>Quantum Dots</subject><subject>Receptors, LDL - deficiency</subject><subject>Time Factors</subject><subject>Tissue Distribution - drug effects</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kd1LwzAUxYMobk5ffZSgvnZL2zRJH2X4BQNB9Lmk7c3IaJOtSQf7703dnCD4dPPxOyc39yB0HZNpTFIxM0YaO00IEVNKshM0jjkVUZrm2elxLfgIXTi3IiRL8oSeo1GcJywTGRmj5h1kE3ndAm7l0oDXFe7A2WBbAdbhTJsllqbGm14ar5WupNfWYKtwo9d23VkP2uAWvCxto12Lw26rtxb3bpAO_VXdznnZuEt0pkKBq0OdoM-nx4_5S7R4e36dPywik6SJjxShUtR1-ARhnNdJSjgDoJUCpUgscmAyr-qSK8UZp1zEEkiZQZVXqcoolekE3e59Q3ebHpwvVrbvTHiyECwXeUw4DdDdf1BCg3HGBGOBujlQfdlCXay7MJNuV_xMMACzPeDClVlC92sTk2LIqPjOqBgyKkJGQXG_Vxjp-w6Oln-wL1H2kV8</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Bruns, Oliver T</creator><creator>Ittrich, Harald</creator><creator>Peldschus, Kersten</creator><creator>Kaul, Michael G</creator><creator>Tromsdorf, Ulrich I</creator><creator>Lauterwasser, Joachim</creator><creator>Nikolic, Marija S</creator><creator>Mollwitz, Birgit</creator><creator>Merkel, Martin</creator><creator>Bigall, Nadja C</creator><creator>Sapra, Sameer</creator><creator>Reimer, Rudolph</creator><creator>Hohenberg, Heinz</creator><creator>Weller, Horst</creator><creator>Eychmüller, Alexander</creator><creator>Adam, Gerhard</creator><creator>Beisiegel, Ulrike</creator><creator>Heeren, Joerg</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20090301</creationdate><title>Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals</title><author>Bruns, Oliver T ; Ittrich, Harald ; Peldschus, Kersten ; Kaul, Michael G ; Tromsdorf, Ulrich I ; Lauterwasser, Joachim ; Nikolic, Marija S ; Mollwitz, Birgit ; Merkel, Martin ; Bigall, Nadja C ; Sapra, Sameer ; Reimer, Rudolph ; Hohenberg, Heinz ; Weller, Horst ; Eychmüller, Alexander ; Adam, Gerhard ; Beisiegel, Ulrike ; Heeren, Joerg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-n232t-f04a8dd3390677d23076ee4cfeff0189e6a9cdb7ff7674781ae0b5ec9c3f544a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Apolipoproteins E - deficiency</topic><topic>Biomedical materials</topic><topic>Blood</topic><topic>Chemistry and Materials Science</topic><topic>Crystals</topic><topic>Dextrans</topic><topic>Electrons</topic><topic>Ferrosoferric Oxide</topic><topic>Fluorescence</topic><topic>Hepatocytes</topic><topic>Hydrophobicity</topic><topic>Injections, Intravenous</topic><topic>Iron - administration & dosage</topic><topic>Iron - pharmacokinetics</topic><topic>Iron - pharmacology</topic><topic>Iron oxides</topic><topic>Kinetics</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Lipoproteins</topic><topic>Lipoproteins - metabolism</topic><topic>Liver - drug effects</topic><topic>Liver - metabolism</topic><topic>Liver - ultrastructure</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetite Nanoparticles</topic><topic>Materials Science</topic><topic>Medical imaging</topic><topic>Metabolic disorders</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Micelles</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Oxides - administration & dosage</topic><topic>Oxides - pharmacokinetics</topic><topic>Oxides - pharmacology</topic><topic>Physical properties</topic><topic>Quantum Dots</topic><topic>Receptors, LDL - deficiency</topic><topic>Time Factors</topic><topic>Tissue Distribution - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruns, Oliver T</creatorcontrib><creatorcontrib>Ittrich, Harald</creatorcontrib><creatorcontrib>Peldschus, Kersten</creatorcontrib><creatorcontrib>Kaul, Michael G</creatorcontrib><creatorcontrib>Tromsdorf, Ulrich I</creatorcontrib><creatorcontrib>Lauterwasser, Joachim</creatorcontrib><creatorcontrib>Nikolic, Marija S</creatorcontrib><creatorcontrib>Mollwitz, Birgit</creatorcontrib><creatorcontrib>Merkel, Martin</creatorcontrib><creatorcontrib>Bigall, Nadja C</creatorcontrib><creatorcontrib>Sapra, Sameer</creatorcontrib><creatorcontrib>Reimer, Rudolph</creatorcontrib><creatorcontrib>Hohenberg, Heinz</creatorcontrib><creatorcontrib>Weller, Horst</creatorcontrib><creatorcontrib>Eychmüller, Alexander</creatorcontrib><creatorcontrib>Adam, Gerhard</creatorcontrib><creatorcontrib>Beisiegel, Ulrike</creatorcontrib><creatorcontrib>Heeren, Joerg</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruns, Oliver T</au><au>Ittrich, Harald</au><au>Peldschus, Kersten</au><au>Kaul, Michael G</au><au>Tromsdorf, Ulrich I</au><au>Lauterwasser, Joachim</au><au>Nikolic, Marija S</au><au>Mollwitz, Birgit</au><au>Merkel, Martin</au><au>Bigall, Nadja C</au><au>Sapra, Sameer</au><au>Reimer, Rudolph</au><au>Hohenberg, Heinz</au><au>Weller, Horst</au><au>Eychmüller, Alexander</au><au>Adam, Gerhard</au><au>Beisiegel, Ulrike</au><au>Heeren, Joerg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2009-03-01</date><risdate>2009</risdate><volume>4</volume><issue>3</issue><spage>193</spage><epage>201</epage><pages>193-201</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Semiconductor quantum dots and superparamagnetic iron oxide nanocrystals have physical properties that are well suited for biomedical imaging. Previously, we have shown that iron oxide nanocrystals embedded within the lipid core of micelles show optimized characteristics for quantitative imaging. Here, we embed quantum dots and superparamagnetic iron oxide nanocrystals in the core of lipoproteins—micelles that transport lipids and other hydrophobic substances in the blood—and show that it is possible to image and quantify the kinetics of lipoprotein metabolism
in vivo
using fluorescence and dynamic magnetic resonance imaging. The lipoproteins were taken up by liver cells in wild-type mice and displayed defective clearance in knock-out mice lacking a lipoprotein receptor or its ligand, indicating that the nanocrystals did not influence the specificity of the metabolic process. Using this strategy it is possible to study the clearance of lipoproteins in metabolic disorders and to improve the contrast in clinical imaging.
Nanocrystals - such as quantum dots and magnetic nanoparticles - embedded in lipoproteins can be used to image and quantify the kinetics of lipid metabolism
in vivo
in a non-invasive manner using fluorescence and dynamic magnetic resonance imaging.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>19265850</pmid><doi>10.1038/nnano.2008.405</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2009-03, Vol.4 (3), p.193-201 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_proquest_journals_869891074 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | Animals Apolipoproteins E - deficiency Biomedical materials Blood Chemistry and Materials Science Crystals Dextrans Electrons Ferrosoferric Oxide Fluorescence Hepatocytes Hydrophobicity Injections, Intravenous Iron - administration & dosage Iron - pharmacokinetics Iron - pharmacology Iron oxides Kinetics Lipid metabolism Lipids Lipoproteins Lipoproteins - metabolism Liver - drug effects Liver - metabolism Liver - ultrastructure Magnetic Resonance Imaging Magnetite Nanoparticles Materials Science Medical imaging Metabolic disorders Metabolism Mice Micelles Nanocrystals Nanoparticles Nanoparticles - chemistry Nanotechnology Nanotechnology and Microengineering Oxides - administration & dosage Oxides - pharmacokinetics Oxides - pharmacology Physical properties Quantum Dots Receptors, LDL - deficiency Time Factors Tissue Distribution - drug effects |
title | Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20magnetic%20resonance%20imaging%20and%20quantification%20of%20lipoprotein%20metabolism%20in%20vivo%20using%20nanocrystals&rft.jtitle=Nature%20nanotechnology&rft.au=Bruns,%20Oliver%20T&rft.date=2009-03-01&rft.volume=4&rft.issue=3&rft.spage=193&rft.epage=201&rft.pages=193-201&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2008.405&rft_dat=%3Cproquest_pubme%3E2364963971%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476756866&rft_id=info:pmid/19265850&rfr_iscdi=true |