Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals

Semiconductor quantum dots and superparamagnetic iron oxide nanocrystals have physical properties that are well suited for biomedical imaging. Previously, we have shown that iron oxide nanocrystals embedded within the lipid core of micelles show optimized characteristics for quantitative imaging. He...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2009-03, Vol.4 (3), p.193-201
Hauptverfasser: Bruns, Oliver T, Ittrich, Harald, Peldschus, Kersten, Kaul, Michael G, Tromsdorf, Ulrich I, Lauterwasser, Joachim, Nikolic, Marija S, Mollwitz, Birgit, Merkel, Martin, Bigall, Nadja C, Sapra, Sameer, Reimer, Rudolph, Hohenberg, Heinz, Weller, Horst, Eychmüller, Alexander, Adam, Gerhard, Beisiegel, Ulrike, Heeren, Joerg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Semiconductor quantum dots and superparamagnetic iron oxide nanocrystals have physical properties that are well suited for biomedical imaging. Previously, we have shown that iron oxide nanocrystals embedded within the lipid core of micelles show optimized characteristics for quantitative imaging. Here, we embed quantum dots and superparamagnetic iron oxide nanocrystals in the core of lipoproteins—micelles that transport lipids and other hydrophobic substances in the blood—and show that it is possible to image and quantify the kinetics of lipoprotein metabolism in vivo using fluorescence and dynamic magnetic resonance imaging. The lipoproteins were taken up by liver cells in wild-type mice and displayed defective clearance in knock-out mice lacking a lipoprotein receptor or its ligand, indicating that the nanocrystals did not influence the specificity of the metabolic process. Using this strategy it is possible to study the clearance of lipoproteins in metabolic disorders and to improve the contrast in clinical imaging. Nanocrystals - such as quantum dots and magnetic nanoparticles - embedded in lipoproteins can be used to image and quantify the kinetics of lipid metabolism in vivo in a non-invasive manner using fluorescence and dynamic magnetic resonance imaging.
ISSN:1748-3387
1748-3395
DOI:10.1038/nnano.2008.405