Optimal update with out-of-sequence measurements

This paper is concerned with optimal filtering in a distributed multiple sensor system with the so-called out-of-sequence measurements (OOSM). Based on best linear unbiased estimation (BLUE) fusion, we present two algorithms for updating with OOSM that are optimal for the information available at th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2005-06, Vol.53 (6), p.1992-2004
Hauptverfasser: Keshu Zhang, Li, X.R., Yunmin Zhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with optimal filtering in a distributed multiple sensor system with the so-called out-of-sequence measurements (OOSM). Based on best linear unbiased estimation (BLUE) fusion, we present two algorithms for updating with OOSM that are optimal for the information available at the time of update. Different minimum storages of information concerning the occurrence time of OOSMs are given for both algorithms. It is shown by analysis and simulation results that the two proposed algorithms are flexible and simple.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2005.847830