A novel interference suppression scheme for global navigation satellite systems using antenna array

This paper considers interference suppression and multipath mitigation in Global Navigation Satellite Systems (GNSSs). In particular, a self-coherence anti-jamming scheme is introduced which relies on the unique structure of the coarse/acquisition (C/A) code of the satellite signals. Because of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2005-05, Vol.23 (5), p.999-1012
Hauptverfasser: Amin, M.G., Wei Sun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers interference suppression and multipath mitigation in Global Navigation Satellite Systems (GNSSs). In particular, a self-coherence anti-jamming scheme is introduced which relies on the unique structure of the coarse/acquisition (C/A) code of the satellite signals. Because of the repetition of the C/A-code within each navigation symbol, the satellite signals exhibit strong self-coherence between chip-rate samples separated by integer multiples of the spreading gain. The proposed scheme utilizes this inherent self-coherence property to excise interferers that have different temporal structures from that of the satellite signals. Using a multiantenna navigation receiver, the proposed approach obtains the optimal set of beamforming coefficients by maximizing the cross correlation between the output signal and a reference signal, which is generated from the received data. It is demonstrated that the proposed scheme can provide high gains toward all satellites in the field of view, while suppressing strong interferers. By imposing constraints on the beamformer, the proposed method is also capable of mitigating multipath that enters the receiver from or near the horizon. No knowledge of either the transmitted navigation symbols or the satellite positions is required.
ISSN:0733-8716
1558-0008
DOI:10.1109/JSAC.2005.845404