Effective length of counterpoise wire under lightning current

In a high soil resistivity area, counterpoise wires are applied to decrease the grounding resistance of tower grounding devices. If the conductor of counterpoise wire is very long, although the power frequency grounding resistance of the tower grounding device is decreased, the lightning protection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2005-04, Vol.20 (2), p.1585-1591
Hauptverfasser: Jinliang He, Yanqing Gao, Rong Zeng, Jun Zou, Xidong Liang, Bo Zhang, Jaebok Lee, Chang, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a high soil resistivity area, counterpoise wires are applied to decrease the grounding resistance of tower grounding devices. If the conductor of counterpoise wire is very long, although the power frequency grounding resistance of the tower grounding device is decreased, the lightning protection performance of the transmission line is still not good. The influences of the length of grounding electrodes on the lightning transient characteristic were analyzed. The dynamic and nonlinear effect of soil ionization around the grounding electrode was considered in the analysis model of transient characteristics for the grounding electrodes under lightning impulse. The counterpoise wire has an effective length when lightning passes through it. When the length of a grounding electrode exceeds the effective length, the grounding conductor will not be utilized effectively. The simulating experiments were performed to analyze influences of the length of the counterpoise wire on the impulse characteristics. The formulae to calculate the impulse effective lengths of counterpoise wires were proposed. The model proposed in the paper has been validated by comparing the numerical results with experimental tests.
ISSN:0885-8977
1937-4208
DOI:10.1109/TPWRD.2004.838457