A particle swarm optimization for economic dispatch with nonsmooth cost functions
This work presents a new approach to economic dispatch (ED) problems with nonsmooth cost functions using a particle swarm optimization (PSO) technique. The practical ED problems have nonsmooth cost functions with equality and inequality constraints that make the problem of finding the global optimum...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2005-02, Vol.20 (1), p.34-42 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work presents a new approach to economic dispatch (ED) problems with nonsmooth cost functions using a particle swarm optimization (PSO) technique. The practical ED problems have nonsmooth cost functions with equality and inequality constraints that make the problem of finding the global optimum difficult using any mathematical approaches. A modified PSO (MPSO) mechanism is suggested to deal with the equality and inequality constraints in the ED problems. A constraint treatment mechanism is devised in such a way that the dynamic process inherent in the conventional PSO is preserved. Moreover, a dynamic search-space reduction strategy is devised to accelerate the optimization process. To show its efficiency and effectiveness, the proposed MPSO is applied to test ED problems, one with smooth cost functions and others with nonsmooth cost functions considering valve-point effects and multi-fuel problems. The results of the MPSO are compared with the results of conventional numerical methods, Tabu search method, evolutionary programming approaches, genetic algorithm, and modified Hopfield neural network approaches. |
---|---|
ISSN: | 0885-8950 1558-0679 |
DOI: | 10.1109/TPWRS.2004.831275 |