Hydrogeology and Mechanics of Subduction Zone Forearcs: Fluid Flow and Pore Pressure

At subduction zones, fluid flow, pore pressure, and tectonic processes are tightly interconnected. Excess pore pressure is driven by tectonic loading and fluids released by mineral dehydration, and it has profound effects on fault and earthquake mechanics through its control on effective stress. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of earth and planetary sciences 2011-05, Vol.39 (1), p.157-186
Hauptverfasser: Saffer, Demian M., Tobin, Harold J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:At subduction zones, fluid flow, pore pressure, and tectonic processes are tightly interconnected. Excess pore pressure is driven by tectonic loading and fluids released by mineral dehydration, and it has profound effects on fault and earthquake mechanics through its control on effective stress. The egress of these overpressured fluids, which is in part governed by the presence of permeable fault zones, is a primary mechanism of volatile and solute transport to the oceans. Recent field measurements, new constraints gained from laboratory studies, and numerical modeling efforts have led to a greatly improved understanding of these coupled processes. Here, we summarize the current state of knowledge of fluid flow and pore pressure in subduction forearcs, and focus on recent advances that have quantified permeability architecture, fluxes, the nature and timing of transience, and pressure distribution, thus providing new insights into the connections between fluid, metamorphic, mechanical, and fault slip processes.
ISSN:0084-6597
1545-4495
DOI:10.1146/annurev-earth-040610-133408