Electrostriction of a Polyurethane Elastomer-Based Polyester
This paper is dealing with the electromechanical properties of a synthesized polyurethane elastomer film-based polyester. On the basis of the electrostatic-field induced strain, dielectric, and stress-strain measurements carried out under ambient conditions, the electromechanical parameters such as...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2006-08, Vol.6 (4), p.876-880 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is dealing with the electromechanical properties of a synthesized polyurethane elastomer film-based polyester. On the basis of the electrostatic-field induced strain, dielectric, and stress-strain measurements carried out under ambient conditions, the electromechanical parameters such as thickness strain, apparent electrostrictive coefficient, effective pressure, mechanical energy density, and Maxwell-effect contribution, were determined. Thickness strain versus the static electric field showed a quadratic dependence up to about 6.3 MV/m, which is consistent with an electrostrictive response. The maximum induced strain of 7% obtained at 16 MV/m is higher than those reported in the literature on unprestrained polyurethane film with noncompliant electrodes. Remarkable apparent electrostrictive coefficient (~7.75 10 -16 m 2 /V 2 ) and response time (600 ms) were found. Under the actual experimental conditions (rigid electrodes and maximum electrostatic field of 16 MV/m), the effective compressive pressure (0.9 MPa) and mechanical energy density (0.032 J/cm 3 ) values are quite noticeable. A small Maxwell-effect contribution of only 0.32% was found. The electromechanical parameters of this polyurethane elastomer indicate that this material is potentially useful for practical actuators and sensors |
---|---|
ISSN: | 1530-437X 1558-1748 |
DOI: | 10.1109/JSEN.2006.877978 |