Characterization of Amorphous GMI Thin-Film Meander Trilayers

This paper presents the magnetic properties of CoFeB trilayer thin films in relation to the high-frequency impedance responses. Fifty- and 100-nm-thin amorphous layers with a central 100- and 200-nm-thin Cu layer, respectively, were sputtered onto a thermally oxidized Si wafer. 300-mum-long meanders...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2006-08, Vol.6 (4), p.970-973
Hauptverfasser: Giouroudi, I., Hauser, H., Musiejovsky, L., Steurer, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents the magnetic properties of CoFeB trilayer thin films in relation to the high-frequency impedance responses. Fifty- and 100-nm-thin amorphous layers with a central 100- and 200-nm-thin Cu layer, respectively, were sputtered onto a thermally oxidized Si wafer. 300-mum-long meanders of 3-20-mum width were structured using a standard mask with various meanders, which were connected in series and were then formed by plasma etching. Magnetization curves, parallel to the easy axis, and hard axis of uniaxial anisotropy, were measured by the magnetooptical Kerr effect exhibiting anisotropy fields of around 2 kA/m and low coercivity in the hard-axis direction, depending on the film thickness. The magnetoimpedance (MI) effect was measured manually from 10 MHz to 1 GHz by means of a network analyzer using the reflected wave through the sample. The maximum effect occurred for both samples at 850 MHz
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2006.877982