Road-map assisted ground moving target tracking

Tracking ground targets with airborne GMTI (ground moving target indicator) sensor measurements proves to be a challenging task due to high target density, high clutter, and low visibility. The exploitation of nonstandard background information such as road maps and terrain information is therefore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2006-10, Vol.42 (4), p.1264-1274
Hauptverfasser: Ulmke, M., Koch, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tracking ground targets with airborne GMTI (ground moving target indicator) sensor measurements proves to be a challenging task due to high target density, high clutter, and low visibility. The exploitation of nonstandard background information such as road maps and terrain information is therefore highly desirable for the enhancement of track quality and track continuity. The present paper presents a Bayesian approach to incorporate such information consistently. It is particularly suited to deal with winding roads and networks of roads. The target dynamics is modeled in quasi one-dimensional road coordinates and mapped onto ground coordinates using linear road segments taking road map errors into account. The case of several intersecting roads with different characteristics, such as mean curvature, slope, or visibility, is treated within an interacting multiple model (IMM) scheme. Targets can be masked both by the clutter notch of the sensor and by terrain obstacles. Both effects are modeled using a sensor-target state dependent detection probability. The iterative filter equations are formulated within a framework of Gaussian sum approximations on the one hand and a particle filter approach on the other hand. Simulation results for single targets taken from a realistic ground scenario show strongly reduced target location errors compared with the case of neglecting road-map information. By modeling the clutter notch of the GMTI sensor, early detection of stopping targets is demonstrated
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2006.314571