A discrete Fourier transform-based adaptive mimic phasor estimator for distance relaying applications
In protection relaying schemes, the digital filter unit plays the essential roles to calculate the accurate phasor. However, while the fault current contains plentiful decaying dc component, the over-reach of distance protection will cause sever problem. This work develops an adaptive mimic phasor e...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power delivery 2006-10, Vol.21 (4), p.1836-1846 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In protection relaying schemes, the digital filter unit plays the essential roles to calculate the accurate phasor. However, while the fault current contains plentiful decaying dc component, the over-reach of distance protection will cause sever problem. This work develops an adaptive mimic phasor estimator to remove the decaying dc oscillation between voltage and current and obtains the accurate apparent impedance. First, a discrete Fourier transform-based mimic phasor estimator is developed. Then, an adaptive scheme is proposed to obtain the decaying time constant. Unlike the fixed decaying dc time constant used in a digital mimic filter, the proposed algorithm adopts the transmission-line parameters information hiding in the voltage and current measurements to adaptively approximate the decaying dc time constant to the accurate value. Thus, the estimation error in the mimic filter due to the time constant mismatch can be eliminated. Both full-cycle and half-cycle versions are developed in this work. Simulations results illustrate the effectiveness of this new algorithm for distance relaying applications |
---|---|
ISSN: | 0885-8977 1937-4208 |
DOI: | 10.1109/TPWRD.2006.874609 |