Preparation and characterization of poly (vinyl butyral)-leather fiber composites

This study reports the preparation and characterization of composites with recycled poly (vinyl butyral) (PVB) and wet blue leather fiber with leather contents of 30, 50, and 70 wt%, using an extruder equipped with a Maillefer single screw operated with a flat extrusion die. The components of the co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer composites 2011-05, Vol.32 (5), p.776-785
Hauptverfasser: Ambrósio, J.D., Lucas, A.A., Otaguro, H., Costa, L.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study reports the preparation and characterization of composites with recycled poly (vinyl butyral) (PVB) and wet blue leather fiber with leather contents of 30, 50, and 70 wt%, using an extruder equipped with a Maillefer single screw operated with a flat extrusion die. The components of the composites were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and Fourier transform infrared spectroscopy (FTIR). After extrusion, the PVB/leather composite plates were compression‐molded to obtain specimens for testing the tensile properties, hardness, abrasion resistance, and tear strength. The morphologies of the composites were analyzed by scanning electron microscopy (SEM). The DMA and FTIR analyses showed that the recycled PVB contained plasticizer remained in the polymer matrix after extrusion. The SEM analysis revealed good interfacial adhesion between the PVB matrix and the leather fibers. Increasing the leather content in the composites led to a significant increase in the tensile modulus and a reduction in the tensile strain at breaks. The Shore hardness of the composites increased with the wt% of leather, whereas the abrasion resistance decreased. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers.
ISSN:0272-8397
1548-0569
DOI:10.1002/pc.21099