Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks
A simultaneous multiplexing and demultiplexing (MUX/DEMUX) scheme for wavelength-interleaved millimeter-wave 37.5-GHz-band fiber-radio channels spaced at 25 GHz has been proposed. The proposed MUX/DEMUX technique potentially realizes simple, compact, and low-cost central office and remote nodes by a...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2006-09, Vol.24 (9), p.3341-3352 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A simultaneous multiplexing and demultiplexing (MUX/DEMUX) scheme for wavelength-interleaved millimeter-wave 37.5-GHz-band fiber-radio channels spaced at 25 GHz has been proposed. The proposed MUX/DEMUX technique potentially realizes simple, compact, and low-cost central office and remote nodes by avoiding the use of wavelength-selective pre- and postprocessing hardware. The novel scheme incorporates an arrayed-waveguide grating with multiple loop-backs between the input and the output ports, in addition to multiple optical circulators and optical isolators. The multiplexing functionality of the proposed technology enables a carrier subtraction technique and consequently reduces the carrier-to-sideband ratios of the multiplexed channels. Multiplexing of the uplink channels generated via several methods is demonstrated experimentally. These techniques include generation of the channels by using the optical carriers that correspond to wavelengths spaced at the free spectral range (FSR) or multiples of the FSR from the downlink (DL) optical carriers and reuse of the DL optical carriers that are recovered by applying a wavelength reuse technique (lambda UL =lambda DL plusmnntimesFSR, where n=0,1,2,3,...). The demultiplexing functionality of the proposed scheme that separates the 37.5-GHz-band wavelength-interleaved DL channels spaced at 25 GHz is also demonstrated. In addition, the effect of optical crosstalk on the transmission performance of the demultiplexed channels is also characterized experimentally |
---|---|
ISSN: | 0733-8724 1558-2213 |
DOI: | 10.1109/JLT.2006.880591 |