Reduced complexity rotation invariant texture classification using a blind deconvolution approach
In this paper, we present a texture classification procedure that makes use of a blind deconvolution approach. Specifically, the texture is modeled as the output of a linear system driven by a binary excitation. We show that features computed from one-dimensional slices extracted from the two-dimens...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2006-01, Vol.28 (1), p.145-149 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present a texture classification procedure that makes use of a blind deconvolution approach. Specifically, the texture is modeled as the output of a linear system driven by a binary excitation. We show that features computed from one-dimensional slices extracted from the two-dimensional autocorrelation function (ACF) of the binary excitation allows representing the texture for rotation-invariant classification purposes. The two-dimensional classification problem is thus reconduced to a more simple one-dimensional one, which leads to a significant reduction of the classification procedure computational complexity. |
---|---|
ISSN: | 0162-8828 1939-3539 |
DOI: | 10.1109/TPAMI.2006.24 |