Hysteresis compensation for giant magnetostrictive actuators using dynamic recurrent neural network

According to the hysteresis characteristics of the giant magnetostrictive actuator (MA), a dynamic recurrent neural network (DRNN) is constructed as the inverse hysteresis model of the MA, and an on-line hysteresis compensation control strategy combining the DRNN inverse compensator and a proportion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2006-04, Vol.42 (4), p.1143-1146
Hauptverfasser: Shuying Cao, Shuying Cao, Boweng Wang, Boweng Wang, Jiaju Zheng, Jiaju Zheng, Wenmei Huang, Wenmei Huang, Ling Weng, Ling Weng, Weili Yan, Weili Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1146
container_issue 4
container_start_page 1143
container_title IEEE transactions on magnetics
container_volume 42
creator Shuying Cao, Shuying Cao
Boweng Wang, Boweng Wang
Jiaju Zheng, Jiaju Zheng
Wenmei Huang, Wenmei Huang
Ling Weng, Ling Weng
Weili Yan, Weili Yan
description According to the hysteresis characteristics of the giant magnetostrictive actuator (MA), a dynamic recurrent neural network (DRNN) is constructed as the inverse hysteresis model of the MA, and an on-line hysteresis compensation control strategy combining the DRNN inverse compensator and a proportional derivative (PD) controller is used for precision position tracking of the MA. Simulation results validate the excellent performances of the proposed strategy
doi_str_mv 10.1109/TMAG.2006.871464
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_865471619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1608413</ieee_id><sourcerecordid>914653565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-4497cd342fff12f98afd72f514c78c85bf3bdbc24539ab59a344d2599c8fe8753</originalsourceid><addsrcrecordid>eNp9kc9rFTEQx4Mo-Gy9C14WQT3ta35vcixFW6Gll3oOednJI3U3eSZZy_vvzfIKBQ-ehpn5fL8w80XoA8FbQrC-eLi7vN5SjOVWDYRL_gptiOakbxP9Gm0wJqrXbf4WvSvlsbVcELxB7uZYKmQooXQuzQeIxdaQYudT7vbBxtrNdh-hplJzcDX8gc66utiacumWEuK-G4_RzsF1GdySMzRJhCXbqZX6lPKvc_TG26nA--d6hn5-__ZwddPf3l__uLq87R1TrPac68GNjFPvPaFeK-vHgXpBuBuUU2Ln2W7cOcoF03YntGWcj1Ro7ZQHNQh2hr6efA85_V6gVDOH4mCabIS0FKPbXwQTciW__JekCjM-aNrAT_-Aj2nJsV1hlBR8IJLoBuET5HIqJYM3hxxmm4-GYLOGY9ZwzBqOOYXTJJ-ffW1xdvLZRhfKi26QEku6Wn88cQEAXtYSK04Y-wuPRpnV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865471619</pqid></control><display><type>article</type><title>Hysteresis compensation for giant magnetostrictive actuators using dynamic recurrent neural network</title><source>IEEE Electronic Library (IEL)</source><creator>Shuying Cao, Shuying Cao ; Boweng Wang, Boweng Wang ; Jiaju Zheng, Jiaju Zheng ; Wenmei Huang, Wenmei Huang ; Ling Weng, Ling Weng ; Weili Yan, Weili Yan</creator><creatorcontrib>Shuying Cao, Shuying Cao ; Boweng Wang, Boweng Wang ; Jiaju Zheng, Jiaju Zheng ; Wenmei Huang, Wenmei Huang ; Ling Weng, Ling Weng ; Weili Yan, Weili Yan</creatorcontrib><description>According to the hysteresis characteristics of the giant magnetostrictive actuator (MA), a dynamic recurrent neural network (DRNN) is constructed as the inverse hysteresis model of the MA, and an on-line hysteresis compensation control strategy combining the DRNN inverse compensator and a proportional derivative (PD) controller is used for precision position tracking of the MA. Simulation results validate the excellent performances of the proposed strategy</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2006.871464</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Actuators ; Compensation ; Cross-disciplinary physics: materials science; rheology ; Dynamic recurrent neural network (DRNN) ; Dynamics ; Exact sciences and technology ; Frequency ; Fuzzy control ; Hysteresis ; Inverse ; inverse compensator ; Inverse problems ; Magnetic hysteresis ; Magnetism ; Magnetostriction ; magnetostrictive actuator (MA) ; Materials science ; Other topics in materials science ; PD control ; Physics ; Proportional control ; Recurrent neural networks ; Saturation magnetization ; Strategy</subject><ispartof>IEEE transactions on magnetics, 2006-04, Vol.42 (4), p.1143-1146</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-4497cd342fff12f98afd72f514c78c85bf3bdbc24539ab59a344d2599c8fe8753</citedby><cites>FETCH-LOGICAL-c383t-4497cd342fff12f98afd72f514c78c85bf3bdbc24539ab59a344d2599c8fe8753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1608413$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1608413$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17660629$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shuying Cao, Shuying Cao</creatorcontrib><creatorcontrib>Boweng Wang, Boweng Wang</creatorcontrib><creatorcontrib>Jiaju Zheng, Jiaju Zheng</creatorcontrib><creatorcontrib>Wenmei Huang, Wenmei Huang</creatorcontrib><creatorcontrib>Ling Weng, Ling Weng</creatorcontrib><creatorcontrib>Weili Yan, Weili Yan</creatorcontrib><title>Hysteresis compensation for giant magnetostrictive actuators using dynamic recurrent neural network</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>According to the hysteresis characteristics of the giant magnetostrictive actuator (MA), a dynamic recurrent neural network (DRNN) is constructed as the inverse hysteresis model of the MA, and an on-line hysteresis compensation control strategy combining the DRNN inverse compensator and a proportional derivative (PD) controller is used for precision position tracking of the MA. Simulation results validate the excellent performances of the proposed strategy</description><subject>Actuators</subject><subject>Compensation</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dynamic recurrent neural network (DRNN)</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Frequency</subject><subject>Fuzzy control</subject><subject>Hysteresis</subject><subject>Inverse</subject><subject>inverse compensator</subject><subject>Inverse problems</subject><subject>Magnetic hysteresis</subject><subject>Magnetism</subject><subject>Magnetostriction</subject><subject>magnetostrictive actuator (MA)</subject><subject>Materials science</subject><subject>Other topics in materials science</subject><subject>PD control</subject><subject>Physics</subject><subject>Proportional control</subject><subject>Recurrent neural networks</subject><subject>Saturation magnetization</subject><subject>Strategy</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc9rFTEQx4Mo-Gy9C14WQT3ta35vcixFW6Gll3oOednJI3U3eSZZy_vvzfIKBQ-ehpn5fL8w80XoA8FbQrC-eLi7vN5SjOVWDYRL_gptiOakbxP9Gm0wJqrXbf4WvSvlsbVcELxB7uZYKmQooXQuzQeIxdaQYudT7vbBxtrNdh-hplJzcDX8gc66utiacumWEuK-G4_RzsF1GdySMzRJhCXbqZX6lPKvc_TG26nA--d6hn5-__ZwddPf3l__uLq87R1TrPac68GNjFPvPaFeK-vHgXpBuBuUU2Ln2W7cOcoF03YntGWcj1Ro7ZQHNQh2hr6efA85_V6gVDOH4mCabIS0FKPbXwQTciW__JekCjM-aNrAT_-Aj2nJsV1hlBR8IJLoBuET5HIqJYM3hxxmm4-GYLOGY9ZwzBqOOYXTJJ-ffW1xdvLZRhfKi26QEku6Wn88cQEAXtYSK04Y-wuPRpnV</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Shuying Cao, Shuying Cao</creator><creator>Boweng Wang, Boweng Wang</creator><creator>Jiaju Zheng, Jiaju Zheng</creator><creator>Wenmei Huang, Wenmei Huang</creator><creator>Ling Weng, Ling Weng</creator><creator>Weili Yan, Weili Yan</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060401</creationdate><title>Hysteresis compensation for giant magnetostrictive actuators using dynamic recurrent neural network</title><author>Shuying Cao, Shuying Cao ; Boweng Wang, Boweng Wang ; Jiaju Zheng, Jiaju Zheng ; Wenmei Huang, Wenmei Huang ; Ling Weng, Ling Weng ; Weili Yan, Weili Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-4497cd342fff12f98afd72f514c78c85bf3bdbc24539ab59a344d2599c8fe8753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Actuators</topic><topic>Compensation</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dynamic recurrent neural network (DRNN)</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Frequency</topic><topic>Fuzzy control</topic><topic>Hysteresis</topic><topic>Inverse</topic><topic>inverse compensator</topic><topic>Inverse problems</topic><topic>Magnetic hysteresis</topic><topic>Magnetism</topic><topic>Magnetostriction</topic><topic>magnetostrictive actuator (MA)</topic><topic>Materials science</topic><topic>Other topics in materials science</topic><topic>PD control</topic><topic>Physics</topic><topic>Proportional control</topic><topic>Recurrent neural networks</topic><topic>Saturation magnetization</topic><topic>Strategy</topic><toplevel>online_resources</toplevel><creatorcontrib>Shuying Cao, Shuying Cao</creatorcontrib><creatorcontrib>Boweng Wang, Boweng Wang</creatorcontrib><creatorcontrib>Jiaju Zheng, Jiaju Zheng</creatorcontrib><creatorcontrib>Wenmei Huang, Wenmei Huang</creatorcontrib><creatorcontrib>Ling Weng, Ling Weng</creatorcontrib><creatorcontrib>Weili Yan, Weili Yan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shuying Cao, Shuying Cao</au><au>Boweng Wang, Boweng Wang</au><au>Jiaju Zheng, Jiaju Zheng</au><au>Wenmei Huang, Wenmei Huang</au><au>Ling Weng, Ling Weng</au><au>Weili Yan, Weili Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hysteresis compensation for giant magnetostrictive actuators using dynamic recurrent neural network</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2006-04-01</date><risdate>2006</risdate><volume>42</volume><issue>4</issue><spage>1143</spage><epage>1146</epage><pages>1143-1146</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>According to the hysteresis characteristics of the giant magnetostrictive actuator (MA), a dynamic recurrent neural network (DRNN) is constructed as the inverse hysteresis model of the MA, and an on-line hysteresis compensation control strategy combining the DRNN inverse compensator and a proportional derivative (PD) controller is used for precision position tracking of the MA. Simulation results validate the excellent performances of the proposed strategy</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2006.871464</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2006-04, Vol.42 (4), p.1143-1146
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_journals_865471619
source IEEE Electronic Library (IEL)
subjects Actuators
Compensation
Cross-disciplinary physics: materials science
rheology
Dynamic recurrent neural network (DRNN)
Dynamics
Exact sciences and technology
Frequency
Fuzzy control
Hysteresis
Inverse
inverse compensator
Inverse problems
Magnetic hysteresis
Magnetism
Magnetostriction
magnetostrictive actuator (MA)
Materials science
Other topics in materials science
PD control
Physics
Proportional control
Recurrent neural networks
Saturation magnetization
Strategy
title Hysteresis compensation for giant magnetostrictive actuators using dynamic recurrent neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hysteresis%20compensation%20for%20giant%20magnetostrictive%20actuators%20using%20dynamic%20recurrent%20neural%20network&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Shuying%20Cao,%20Shuying%20Cao&rft.date=2006-04-01&rft.volume=42&rft.issue=4&rft.spage=1143&rft.epage=1146&rft.pages=1143-1146&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2006.871464&rft_dat=%3Cproquest_RIE%3E914653565%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865471619&rft_id=info:pmid/&rft_ieee_id=1608413&rfr_iscdi=true