Hysteresis compensation for giant magnetostrictive actuators using dynamic recurrent neural network
According to the hysteresis characteristics of the giant magnetostrictive actuator (MA), a dynamic recurrent neural network (DRNN) is constructed as the inverse hysteresis model of the MA, and an on-line hysteresis compensation control strategy combining the DRNN inverse compensator and a proportion...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2006-04, Vol.42 (4), p.1143-1146 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1146 |
---|---|
container_issue | 4 |
container_start_page | 1143 |
container_title | IEEE transactions on magnetics |
container_volume | 42 |
creator | Shuying Cao, Shuying Cao Boweng Wang, Boweng Wang Jiaju Zheng, Jiaju Zheng Wenmei Huang, Wenmei Huang Ling Weng, Ling Weng Weili Yan, Weili Yan |
description | According to the hysteresis characteristics of the giant magnetostrictive actuator (MA), a dynamic recurrent neural network (DRNN) is constructed as the inverse hysteresis model of the MA, and an on-line hysteresis compensation control strategy combining the DRNN inverse compensator and a proportional derivative (PD) controller is used for precision position tracking of the MA. Simulation results validate the excellent performances of the proposed strategy |
doi_str_mv | 10.1109/TMAG.2006.871464 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_865471619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1608413</ieee_id><sourcerecordid>914653565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-4497cd342fff12f98afd72f514c78c85bf3bdbc24539ab59a344d2599c8fe8753</originalsourceid><addsrcrecordid>eNp9kc9rFTEQx4Mo-Gy9C14WQT3ta35vcixFW6Gll3oOednJI3U3eSZZy_vvzfIKBQ-ehpn5fL8w80XoA8FbQrC-eLi7vN5SjOVWDYRL_gptiOakbxP9Gm0wJqrXbf4WvSvlsbVcELxB7uZYKmQooXQuzQeIxdaQYudT7vbBxtrNdh-hplJzcDX8gc66utiacumWEuK-G4_RzsF1GdySMzRJhCXbqZX6lPKvc_TG26nA--d6hn5-__ZwddPf3l__uLq87R1TrPac68GNjFPvPaFeK-vHgXpBuBuUU2Ln2W7cOcoF03YntGWcj1Ro7ZQHNQh2hr6efA85_V6gVDOH4mCabIS0FKPbXwQTciW__JekCjM-aNrAT_-Aj2nJsV1hlBR8IJLoBuET5HIqJYM3hxxmm4-GYLOGY9ZwzBqOOYXTJJ-ffW1xdvLZRhfKi26QEku6Wn88cQEAXtYSK04Y-wuPRpnV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865471619</pqid></control><display><type>article</type><title>Hysteresis compensation for giant magnetostrictive actuators using dynamic recurrent neural network</title><source>IEEE Electronic Library (IEL)</source><creator>Shuying Cao, Shuying Cao ; Boweng Wang, Boweng Wang ; Jiaju Zheng, Jiaju Zheng ; Wenmei Huang, Wenmei Huang ; Ling Weng, Ling Weng ; Weili Yan, Weili Yan</creator><creatorcontrib>Shuying Cao, Shuying Cao ; Boweng Wang, Boweng Wang ; Jiaju Zheng, Jiaju Zheng ; Wenmei Huang, Wenmei Huang ; Ling Weng, Ling Weng ; Weili Yan, Weili Yan</creatorcontrib><description>According to the hysteresis characteristics of the giant magnetostrictive actuator (MA), a dynamic recurrent neural network (DRNN) is constructed as the inverse hysteresis model of the MA, and an on-line hysteresis compensation control strategy combining the DRNN inverse compensator and a proportional derivative (PD) controller is used for precision position tracking of the MA. Simulation results validate the excellent performances of the proposed strategy</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2006.871464</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Actuators ; Compensation ; Cross-disciplinary physics: materials science; rheology ; Dynamic recurrent neural network (DRNN) ; Dynamics ; Exact sciences and technology ; Frequency ; Fuzzy control ; Hysteresis ; Inverse ; inverse compensator ; Inverse problems ; Magnetic hysteresis ; Magnetism ; Magnetostriction ; magnetostrictive actuator (MA) ; Materials science ; Other topics in materials science ; PD control ; Physics ; Proportional control ; Recurrent neural networks ; Saturation magnetization ; Strategy</subject><ispartof>IEEE transactions on magnetics, 2006-04, Vol.42 (4), p.1143-1146</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-4497cd342fff12f98afd72f514c78c85bf3bdbc24539ab59a344d2599c8fe8753</citedby><cites>FETCH-LOGICAL-c383t-4497cd342fff12f98afd72f514c78c85bf3bdbc24539ab59a344d2599c8fe8753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1608413$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1608413$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17660629$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shuying Cao, Shuying Cao</creatorcontrib><creatorcontrib>Boweng Wang, Boweng Wang</creatorcontrib><creatorcontrib>Jiaju Zheng, Jiaju Zheng</creatorcontrib><creatorcontrib>Wenmei Huang, Wenmei Huang</creatorcontrib><creatorcontrib>Ling Weng, Ling Weng</creatorcontrib><creatorcontrib>Weili Yan, Weili Yan</creatorcontrib><title>Hysteresis compensation for giant magnetostrictive actuators using dynamic recurrent neural network</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>According to the hysteresis characteristics of the giant magnetostrictive actuator (MA), a dynamic recurrent neural network (DRNN) is constructed as the inverse hysteresis model of the MA, and an on-line hysteresis compensation control strategy combining the DRNN inverse compensator and a proportional derivative (PD) controller is used for precision position tracking of the MA. Simulation results validate the excellent performances of the proposed strategy</description><subject>Actuators</subject><subject>Compensation</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dynamic recurrent neural network (DRNN)</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Frequency</subject><subject>Fuzzy control</subject><subject>Hysteresis</subject><subject>Inverse</subject><subject>inverse compensator</subject><subject>Inverse problems</subject><subject>Magnetic hysteresis</subject><subject>Magnetism</subject><subject>Magnetostriction</subject><subject>magnetostrictive actuator (MA)</subject><subject>Materials science</subject><subject>Other topics in materials science</subject><subject>PD control</subject><subject>Physics</subject><subject>Proportional control</subject><subject>Recurrent neural networks</subject><subject>Saturation magnetization</subject><subject>Strategy</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc9rFTEQx4Mo-Gy9C14WQT3ta35vcixFW6Gll3oOednJI3U3eSZZy_vvzfIKBQ-ehpn5fL8w80XoA8FbQrC-eLi7vN5SjOVWDYRL_gptiOakbxP9Gm0wJqrXbf4WvSvlsbVcELxB7uZYKmQooXQuzQeIxdaQYudT7vbBxtrNdh-hplJzcDX8gc66utiacumWEuK-G4_RzsF1GdySMzRJhCXbqZX6lPKvc_TG26nA--d6hn5-__ZwddPf3l__uLq87R1TrPac68GNjFPvPaFeK-vHgXpBuBuUU2Ln2W7cOcoF03YntGWcj1Ro7ZQHNQh2hr6efA85_V6gVDOH4mCabIS0FKPbXwQTciW__JekCjM-aNrAT_-Aj2nJsV1hlBR8IJLoBuET5HIqJYM3hxxmm4-GYLOGY9ZwzBqOOYXTJJ-ffW1xdvLZRhfKi26QEku6Wn88cQEAXtYSK04Y-wuPRpnV</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Shuying Cao, Shuying Cao</creator><creator>Boweng Wang, Boweng Wang</creator><creator>Jiaju Zheng, Jiaju Zheng</creator><creator>Wenmei Huang, Wenmei Huang</creator><creator>Ling Weng, Ling Weng</creator><creator>Weili Yan, Weili Yan</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060401</creationdate><title>Hysteresis compensation for giant magnetostrictive actuators using dynamic recurrent neural network</title><author>Shuying Cao, Shuying Cao ; Boweng Wang, Boweng Wang ; Jiaju Zheng, Jiaju Zheng ; Wenmei Huang, Wenmei Huang ; Ling Weng, Ling Weng ; Weili Yan, Weili Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-4497cd342fff12f98afd72f514c78c85bf3bdbc24539ab59a344d2599c8fe8753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Actuators</topic><topic>Compensation</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dynamic recurrent neural network (DRNN)</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Frequency</topic><topic>Fuzzy control</topic><topic>Hysteresis</topic><topic>Inverse</topic><topic>inverse compensator</topic><topic>Inverse problems</topic><topic>Magnetic hysteresis</topic><topic>Magnetism</topic><topic>Magnetostriction</topic><topic>magnetostrictive actuator (MA)</topic><topic>Materials science</topic><topic>Other topics in materials science</topic><topic>PD control</topic><topic>Physics</topic><topic>Proportional control</topic><topic>Recurrent neural networks</topic><topic>Saturation magnetization</topic><topic>Strategy</topic><toplevel>online_resources</toplevel><creatorcontrib>Shuying Cao, Shuying Cao</creatorcontrib><creatorcontrib>Boweng Wang, Boweng Wang</creatorcontrib><creatorcontrib>Jiaju Zheng, Jiaju Zheng</creatorcontrib><creatorcontrib>Wenmei Huang, Wenmei Huang</creatorcontrib><creatorcontrib>Ling Weng, Ling Weng</creatorcontrib><creatorcontrib>Weili Yan, Weili Yan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shuying Cao, Shuying Cao</au><au>Boweng Wang, Boweng Wang</au><au>Jiaju Zheng, Jiaju Zheng</au><au>Wenmei Huang, Wenmei Huang</au><au>Ling Weng, Ling Weng</au><au>Weili Yan, Weili Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hysteresis compensation for giant magnetostrictive actuators using dynamic recurrent neural network</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2006-04-01</date><risdate>2006</risdate><volume>42</volume><issue>4</issue><spage>1143</spage><epage>1146</epage><pages>1143-1146</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>According to the hysteresis characteristics of the giant magnetostrictive actuator (MA), a dynamic recurrent neural network (DRNN) is constructed as the inverse hysteresis model of the MA, and an on-line hysteresis compensation control strategy combining the DRNN inverse compensator and a proportional derivative (PD) controller is used for precision position tracking of the MA. Simulation results validate the excellent performances of the proposed strategy</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2006.871464</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2006-04, Vol.42 (4), p.1143-1146 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_proquest_journals_865471619 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators Compensation Cross-disciplinary physics: materials science rheology Dynamic recurrent neural network (DRNN) Dynamics Exact sciences and technology Frequency Fuzzy control Hysteresis Inverse inverse compensator Inverse problems Magnetic hysteresis Magnetism Magnetostriction magnetostrictive actuator (MA) Materials science Other topics in materials science PD control Physics Proportional control Recurrent neural networks Saturation magnetization Strategy |
title | Hysteresis compensation for giant magnetostrictive actuators using dynamic recurrent neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hysteresis%20compensation%20for%20giant%20magnetostrictive%20actuators%20using%20dynamic%20recurrent%20neural%20network&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Shuying%20Cao,%20Shuying%20Cao&rft.date=2006-04-01&rft.volume=42&rft.issue=4&rft.spage=1143&rft.epage=1146&rft.pages=1143-1146&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2006.871464&rft_dat=%3Cproquest_RIE%3E914653565%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865471619&rft_id=info:pmid/&rft_ieee_id=1608413&rfr_iscdi=true |