Hysteresis compensation for giant magnetostrictive actuators using dynamic recurrent neural network

According to the hysteresis characteristics of the giant magnetostrictive actuator (MA), a dynamic recurrent neural network (DRNN) is constructed as the inverse hysteresis model of the MA, and an on-line hysteresis compensation control strategy combining the DRNN inverse compensator and a proportion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2006-04, Vol.42 (4), p.1143-1146
Hauptverfasser: Shuying Cao, Shuying Cao, Boweng Wang, Boweng Wang, Jiaju Zheng, Jiaju Zheng, Wenmei Huang, Wenmei Huang, Ling Weng, Ling Weng, Weili Yan, Weili Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:According to the hysteresis characteristics of the giant magnetostrictive actuator (MA), a dynamic recurrent neural network (DRNN) is constructed as the inverse hysteresis model of the MA, and an on-line hysteresis compensation control strategy combining the DRNN inverse compensator and a proportional derivative (PD) controller is used for precision position tracking of the MA. Simulation results validate the excellent performances of the proposed strategy
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2006.871464