Hysteresis compensation for giant magnetostrictive actuators using dynamic recurrent neural network
According to the hysteresis characteristics of the giant magnetostrictive actuator (MA), a dynamic recurrent neural network (DRNN) is constructed as the inverse hysteresis model of the MA, and an on-line hysteresis compensation control strategy combining the DRNN inverse compensator and a proportion...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2006-04, Vol.42 (4), p.1143-1146 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | According to the hysteresis characteristics of the giant magnetostrictive actuator (MA), a dynamic recurrent neural network (DRNN) is constructed as the inverse hysteresis model of the MA, and an on-line hysteresis compensation control strategy combining the DRNN inverse compensator and a proportional derivative (PD) controller is used for precision position tracking of the MA. Simulation results validate the excellent performances of the proposed strategy |
---|---|
ISSN: | 0018-9464 1941-0069 |
DOI: | 10.1109/TMAG.2006.871464 |