Classification-Driven Watershed Segmentation

This paper presents a novel approach for creation of topographical function and object markers used within watershed segmentation. Typically, marker-driven watershed segmentation extracts seeds indicating the presence of objects or background at specific image locations. The marker locations are the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2007-05, Vol.16 (5), p.1437-1445
Hauptverfasser: Levner, I., Hong Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a novel approach for creation of topographical function and object markers used within watershed segmentation. Typically, marker-driven watershed segmentation extracts seeds indicating the presence of objects or background at specific image locations. The marker locations are then set to be regional minima within the topological surface (typically, the gradient of the original input image), and the watershed algorithm is applied. In contrast, our approach uses two classifiers, one trained to produce markers, the other trained to produce object boundaries. As a result of using machine-learned pixel classification, the proposed algorithm is directly applicable to both single channel and multichannel image data. Additionally, rather than flooding the gradient image, we use the inverted probability map produced by the second aforementioned classifier as input to the watershed algorithm. Experimental results demonstrate the superior performance of the classification-driven watershed segmentation algorithm for the tasks of 1) image-based granulometry and 2) remote sensing
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2007.894239