Low-Cost Fast VLSI Algorithm for Discrete Fourier Transform

A primeN-length discrete Fourier transform (DFT) can be reformulated into a (N-1)-length complex cyclic convolution and then implemented by systolic array or distributed arithmetic. In this paper, a recently proposed hardware efficient fast cyclic convolution algorithm is combined with the symmetry...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. 1, Fundamental theory and applications Fundamental theory and applications, 2007-04, Vol.54 (4), p.791-806
Hauptverfasser: Chao Cheng, Parhi, K.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A primeN-length discrete Fourier transform (DFT) can be reformulated into a (N-1)-length complex cyclic convolution and then implemented by systolic array or distributed arithmetic. In this paper, a recently proposed hardware efficient fast cyclic convolution algorithm is combined with the symmetry properties of DFT to get a new hardware efficient fast algorithm for small-length DFT, and then WFTA is used to control the increase of the hardware cost when the transform length Nis large. Compared with previously proposed low-cost DFT and FFT algorithms with computation complexity of O(logN), the new algorithm can save 30% to 50% multipliers on average and improve the average processing speed by a factor of 2, when DFT length Nvaries from 20 to 2040. Compared with previous prime-length DFT design, the proposed design can save large amount of hardware cost with the same processing speed when the transform length is long. Furthermore, the proposed design has much more choices for different applicable DFT transform lengths and the processing speed can be flexible and balanced with the hardware cost
ISSN:1549-8328
1057-7122
1558-0806
DOI:10.1109/TCSI.2006.888772