Tree Detection in Urban Regions Using Aerial Lidar and Image Data
In this letter, we present an approach to detecting trees in registered aerial image and range data obtained via lidar. The motivation for this problem comes from automated 3-D city modeling, in which such data are used to generate the models. Representing the trees in these models is problematic be...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2007-04, Vol.4 (2), p.196-200 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter, we present an approach to detecting trees in registered aerial image and range data obtained via lidar. The motivation for this problem comes from automated 3-D city modeling, in which such data are used to generate the models. Representing the trees in these models is problematic because the data are usually too sparsely sampled in tree regions to create an accurate 3-D model of the trees. Furthermore, including the tree data points interferes with the polygonization step of the building roof top models. Therefore, it is advantageous to detect and remove points that represent trees in both lidar and aerial imagery. In this letter, we propose a two-step method for tree detection consisting of segmentation followed by classification. The segmentation is done using a simple region-growing algorithm using weighted features from aerial image and lidar, such as height, texture map, height variation, and normal vector estimates. The weights for the features are determined using a learning method on random walks. The classification is done using the weighted support vector machines, allowing us to control the misclassification rate. The overall problem is formulated as a binary detection problem, and the results presented as receiver operating characteristic curves are shown to validate our approach |
---|---|
ISSN: | 1545-598X 1558-0571 |
DOI: | 10.1109/LGRS.2006.888107 |