A Network Calculus With Effective Bandwidth
This paper establishes a link between two principal tools for the analysis of network traffic, namely, effective bandwidth and network calculus. It is shown that a general version of effective bandwidth can be expressed within the framework of a probabilistic version of the network calculus, where b...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on networking 2007-12, Vol.15 (6), p.1442-1453 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper establishes a link between two principal tools for the analysis of network traffic, namely, effective bandwidth and network calculus. It is shown that a general version of effective bandwidth can be expressed within the framework of a probabilistic version of the network calculus, where both arrivals and service are specified in terms of probabilistic bounds. By formulating well-known effective bandwidth expressions in terms of probabilistic envelope functions, the developed network calculus can be applied to a wide range of traffic types, including traffic that has self-similar characteristics. As applications, probabilistic lower bounds are presented on the service given by three different scheduling algorithms: static priority, earliest deadline first, and generalized processor sharing. Numerical examples show the impact of specific traffic models and scheduling algorithms on the multiplexing gain in a network. |
---|---|
ISSN: | 1063-6692 1558-2566 |
DOI: | 10.1109/TNET.2007.896501 |