A Note on the Lehmer Problem over Short Intervals
Let p be an odd prime, c be an integer with (c,p) = 1, and let N be a positive integer withN ≤ p - 1. Denote by r(N, c;p) the number of integers a satisfying 1 ≤ a ≤ N and 2 a + a, where a is an integer with 1 ≤a≤ p - 1, aa ≡ c (mod p). It is well known that r(N, c;p) = 1/2N + O(p1/2log2p).The main...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2011-06, Vol.27 (6), p.1115-1120 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let p be an odd prime, c be an integer with (c,p) = 1, and let N be a positive integer withN ≤ p - 1. Denote by r(N, c;p) the number of integers a satisfying 1 ≤ a ≤ N and 2 a + a, where a is an integer with 1 ≤a≤ p - 1, aa ≡ c (mod p). It is well known that r(N, c;p) = 1/2N + O(p1/2log2p).The main purpose of this paper is to give an asymptotic formula for ∑p-1 c=1(τ(N,c;p)-1/2N)2. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-011-8554-8 |