Joint Segmentation of Multivariate Astronomical Time Series: Bayesian Sampling With a Hierarchical Model

Astronomy and other sciences often face the problem of detecting and characterizing structure in two or more related time series. This paper approaches such problems using Bayesian priors to represent relationships between signals with various degrees of certainty, and not just rigid constraints. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2007-02, Vol.55 (2), p.414-423
Hauptverfasser: Dobigeon, N., Tourneret, J.-Y., Scargle, J.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Astronomy and other sciences often face the problem of detecting and characterizing structure in two or more related time series. This paper approaches such problems using Bayesian priors to represent relationships between signals with various degrees of certainty, and not just rigid constraints. The segmentation is conducted by using a hierarchical Bayesian approach to a piecewise constant Poisson rate model. A Gibbs sampling strategy allows joint estimation of the unknown parameters and hyperparameters. Results obtained with synthetic and real photon counting data illustrate the performance of the proposed algorithm
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2006.885768