Snow-Covered Area Estimation Using Satellite Radar Wide-Swath Images

Satellite radar-based remote sensing of snow cover during the snow-melt season has been widely studied for different geographical regions, such as mountainous, open, and forested areas. However, a single method has not been found to function well on all regions. The investigations on boreal forest z...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2007-04, Vol.45 (4), p.978-989
Hauptverfasser: Luojus, K.P., Pulliainen, J.T., Metsamaki, S.J., Hallikainen, M.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Satellite radar-based remote sensing of snow cover during the snow-melt season has been widely studied for different geographical regions, such as mountainous, open, and forested areas. However, a single method has not been found to function well on all regions. The investigations on boreal forest zone have allowed the Helsinki University of Technology (TKK) to develop a snow-covered area (SCA) method that is feasible using spatially limited European Remote Sensing-1/2 Satellite data. This paper investigates the use of wide-swath radar data for boreal forest SCA estimation for the first time. The TKK SCA method is adapted here for HH-polarization Radarsat data. The predominant aspect originated by the use of wide-swath synthetic aperture radar (SAR) data is the large variation in the radar incidence angle. The effect of incidence angle variation on SCA estimation is characterized in this paper. The foundation for operational implementation of the TKK SCA method is also established by an error propagation analysis presented in this paper. The error propagation analysis is compared with accuracy characteristics acquired between SAR and optical SCA evaluation. The performance of forest compensation, which is a key element of the TKK method, was analyzed for the wide-swath radar data. Furthermore, the correlation between the topography and the SCA estimation accuracy was examined in this paper. This paper lays the foundation for operational SCA estimation on boreal forest zone using wide-swath SAR data
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2006.888864