A 90-nm Low-Power FPGA for Battery-Powered Applications
Programmable logic devices such as field-programmable gate arrays (FPGAs) are useful for a wide range of applications. However, FPGAs are not commonly used in battery-powered applications because they consume more power than application-specified integrated circuits and lack power management feature...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2007-02, Vol.26 (2), p.296-300 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Programmable logic devices such as field-programmable gate arrays (FPGAs) are useful for a wide range of applications. However, FPGAs are not commonly used in battery-powered applications because they consume more power than application-specified integrated circuits and lack power management features. In this paper, we describe the design and implementation of Pika, a low-power FPGA core targeting battery-powered applications. Our design is based on a commercial low-cost FPGA and achieves substantial power savings through a series of power optimizations. The resulting architecture is compatible with existing commercial design tools. The implementation is done in a 90-nm triple-oxide CMOS process. Compared to the baseline design, Pika consumes 46% less active power and 99% less standby power. Furthermore, it retains circuit and configuration state during standby mode and wakes up from standby mode in approximately 100 ns |
---|---|
ISSN: | 0278-0070 1937-4151 |
DOI: | 10.1109/TCAD.2006.885731 |