A 90-nm Low-Power FPGA for Battery-Powered Applications

Programmable logic devices such as field-programmable gate arrays (FPGAs) are useful for a wide range of applications. However, FPGAs are not commonly used in battery-powered applications because they consume more power than application-specified integrated circuits and lack power management feature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2007-02, Vol.26 (2), p.296-300
Hauptverfasser: Tuan, T., Rahman, A., Das, S., Trimberger, S., Sean Kao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Programmable logic devices such as field-programmable gate arrays (FPGAs) are useful for a wide range of applications. However, FPGAs are not commonly used in battery-powered applications because they consume more power than application-specified integrated circuits and lack power management features. In this paper, we describe the design and implementation of Pika, a low-power FPGA core targeting battery-powered applications. Our design is based on a commercial low-cost FPGA and achieves substantial power savings through a series of power optimizations. The resulting architecture is compatible with existing commercial design tools. The implementation is done in a 90-nm triple-oxide CMOS process. Compared to the baseline design, Pika consumes 46% less active power and 99% less standby power. Furthermore, it retains circuit and configuration state during standby mode and wakes up from standby mode in approximately 100 ns
ISSN:0278-0070
1937-4151
DOI:10.1109/TCAD.2006.885731