In Situ Observation of Strain Evolution in Cp-Ti Over Multiple Length Scales
The strain evolution in polycrystalline CP-Ti strip under tension was studied in situ and at two length scales using Synchrotron X-ray diffraction. To establish the bulk material behavior, experiments were performed at the Australian Synchrotron facility. Because of the relatively large grain size,...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2011-01, Vol.42 (1), p.100-110 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The strain evolution in polycrystalline CP-Ti strip under tension was studied
in situ
and at two length scales using Synchrotron X-ray diffraction. To establish the bulk material behavior, experiments were performed at the Australian Synchrotron facility. Because of the relatively large grain size, discontinuous “spotty” Debye ring patterns were observed, and a peak fitting algorithm was developed to determine the individual spot positions with the necessary precision for strain determination. The crystallographic directional dependence of strain anisotropy during the loading cycle was determined. Strain anisotropy and yielding of individual crystallographic planes prior to the macroscopic yield point were further clarified by
in situ
loading experiments performed at the Advanced Light Source (ALS). The deviatoric strain accumulation and plastic response were mapped on a grain-by-grain basis. The onset of microscopic yielding in the grains was identified and correlated with the relative orientation of the grains with respect to the loading direction. |
---|---|
ISSN: | 1073-5623 1543-1940 |
DOI: | 10.1007/s11661-010-0511-0 |